Does aid for trade enhance export performance?
Investigating on the infrastructure channel

Mariana Vijil1,2
Laurent Wagner3

This version
August 2010

Summary:

In the empiric literature it has been demonstrated that trade can be a powerful engine to enhance economic development and poverty reduction. Nevertheless, market access seems not enough for some countries facing internal obstacles to trade, as a lack of knowledge, excessive red tape, insufficient financing and poor infrastructure. Therefore, the international community is placing an increasing emphasis on the Aid for Trade (AfT) initiative to assist developing countries in their attempt to enhance export performance and integration into the global economy, by targeting their own domestic constraints. Despite the attractiveness of the Aid for Trade initiative for policy makers, there is only scarce evidence on the effectiveness of such assistance. We fill this gap by proposing a two step analysis that allows us to disentangle the channels by which aid for trade enhance export performance by taking into account the endogeneity issue.

1 INRA, UMR1302 SMART, F-35000 Rennes, France
2 Agrocampus Ouest, UMR1302 SMART, F-35000 Rennes, France
Contact : mariana.vijil@rennes.inra.fr
3 Cerdi-CNRS, Université d’Auvergne, Clermont-Ferrand, France
Contact : wagner.l@wanadoo.fr
1- Introduction

In the empiric literature it has been demonstrated that trade can be a powerful engine to enhance economic development and poverty reduction (Cling 2006). Thus, Outward-Oriented growth has been a popular development strategy within low income countries since structural adjustments plans. However, there are few cases where these policies effectively succeed with growing revenues and reducing poverty. Furthermore, as Brun et al. (2005) noted, evidences are consistent with the claim that poor countries have been marginalized by the recent wave of globalization. Also, the share of the poorest developing countries in global trade has not increased despite the preferential trade schemes accorded by industrialised partners (Huchet-Bourdon et al. 2009).

Indeed, market access seems not enough for some countries facing internal obstacles to trade, as a lack of knowledge, excessive red tape, insufficient financing and poor infrastructure. Therefore, the international community is placing an increasing emphasis on the Aid for Trade (AfT) initiative to assist developing countries in their attempt to enhance export performance and integration into the global economy, by targeting their own domestic constraints. The AfT Task Force defines this initiative as assistance to developing countries to increase exports of goods and services, to integrate the multilateral trading system, and to benefit from liberalized trade and increased market access. Furthermore, AfT should increase economic growth and reduce poverty, as well as complement multilateral trade negotiations. Despite the ongoing debate on aid effectiveness following the “Paris Declaration” and the Doha agenda, there are little evidences on the success of previous attempt to support export development. With that in mind, it seems relevant to assess the impact of assistance to trade facilitation on trade performance.

Starting from a macroeconomic perspective, the literature on the impact of aid on growth has so far failed to provide strong and convincing results (Rajan and Subramanian 2005, Roodman 2007), partly because of its effects on trade via a “Dutch disease” phenomenon related to real exchange rates. Nevertheless, Adam and Bevan (2006) find that this short-run negative impact can be offset in a medium-term by potential productivity spillover created by aid-financed public expenditures. Furthermore, since growth is influenced by a variety of factors and aid for trade flows are relatively small, focusing on a particular kind of aid and its
targeted sector could be an answer to test the effectiveness without the need to consider Dutch disease problems.

Gamberoni and Newfarmer (2009) study aims to detect countries that are under performing in trade and that receive less aid for trade than their potential demand. Authors construct a trade performance indicator which is assimilated to the potential demand factor for each developing country. This index include trade variables and internal capacity constraints related to institutions, infrastructure and trade policy. Finally, to identify countries that receive less aid for trade than expected, they introduce this index of trade performance in a cross sectional estimation explaining aid for trade per recipient GDP, controlling for the level of development and the potential effectiveness of assistance. Huchet-Bourdon et al. (2009) also aims to propose a classification of developing countries according to their performance on indicators related to the categories included in the Aid for Trade initiative, in order to highlight the priorities in term of geographical and sectoral allocation of such assistance. These works highlight the need of raising aid to countries that are under-receiving and can be used as a benchmark to monitoring trade performance of recipients. Nevertheless, it does not asses the key question related to the effectiveness of these flows on trade outputs.

Actually, there are few empirical studies assessing the effectiveness of aid for trade on trade performance, mostly because of the lack of sectoral data of sufficient quality and time length. Nevertheless, this kind of approach seems relevant to understand the various channels through which the various types of aid operate (Mavrotas and Nunnenkamp 2007). Among the papers seeking to quantify empirically its impact on trade flows, Wilson et al. (2009) find that assistance directed toward trade facilitation enhance the trade performance of recipient countries. They estimate, with a gravity model, that a one percent increase in assistance to trade facilitation could generate an increase in global trade of about US$ 415 million. Furthermore, the effect of aid directed to the “Trade Policy and Regulation” category seems stronger both in robustness and magnitude with a particularly high impact on aid recipient’s exports. Also, this aid category exhibit the highest rate of return with US$697 in additional trade for every dollar invested.

Cali and Te Velde (2008) assess the impact of different type of aid for trade flows on the economic environment of recipient countries. In a cross-section estimation framework on 120 developing countries, they find that aid for “Trade Facilitation” reduces the export time, the
cost (in US$) and the documents needed to export. In addition, using panel data they test if aid related to infrastructure and capacity building have an impact on both sectoral and total exports. They find that aid for infrastructure has an impact on both dependent variables. Nevertheless, the effect of aid to capacity building is only revealed using sectoral exports. Indeed, this paper investigates on the various channels -namely trade and production cost- through which aid for trade enhance export performance.

Lederman et al. (2010) evaluate the effectiveness of Export Promotion Agencies (EPAs) on exports. It should be noticed that these agencies are mostly financed by foreign assistance in the poorest developing countries. They find that these institutions have, on average, a positive and significant impact on exports, but with heterogeneous effects across regions, with Africa particularly lagging behind. The authors note also that EPAs in hand of the private sector but with a large share of public sector funding are the best performers. Brenton and von Euakull (2009) as well find that technical assistance for exports targeted to some specific products enhance, on average, export performance. Nevertheless, using a difference-by-difference approach they conclude that this effect is not entirely due to the export development program, and that the allocation of funds should be more directed to sectors that remain behind.

Those evidences suggest that public investments can have a strong impact on export performance and underline the case for assistance in countries that have weak capacity and limited financial resources to address relevant constraints (Bougheas et al. 1999, Adam and Bevan 2006). Nevertheless, existing works do not test channels by which aid for trade flows spend in programs or projects can boost trade. Since variations in trade costs across countries due to economic environment variables may be able to explain variations in competitiveness, differences in institutional quality and infrastructure related to trade across countries may be responsible for differences in trade costs. In turn, those differences may be able to explain the levels of export performance. Therefore, considering that the literature on trade costs and trade exhibit strong results, it seems relevant to focus on the effectiveness of aid flows on these internal constraints.

After reviewing the literature on trade cost in a second part, we present the available data on aid for trade in a third part. We address the question of the effectiveness of aid for trade in the rest of the paper using a two steps empirical analysis. Our empirical specification derives from the theoretical model of export performance from Redding and Venables (2003, 2004).
Using an aggregation of gravity equations for each exporter, export supply for a country i depends on its size, internal costs and international market access. With that in mind, in a fourth part, we test if institutions and infrastructures, our two potential channels of transmission, are indeed determinants of export performance. Then, we test, in a fifth part, the impact of aid for trade sectoral flows on the determinants that were previously highlighted. We show that the infrastructure channel appears to be highly significant in the first step whereas the institutional one turns out to have limited impact on the export performance of developing countries. Furthermore, in our second step, aid for infrastructure seems to have a strong and positive impact on the infrastructure level. Moreover, we also propose a new instrument to address the endogeneity issue related with the aid for infrastructure variable.

2- Empirical literature on trade costs

As Wilson and Abe (2009) noted, trade costs can be widely defined as any costs which increase the price of traded goods during the delivery process from the exporters (or producers) in exporting countries to the final consumers. There is an extensive literature on internal trade barriers that demonstrates the opportunities for a well designed aid for trade facilitation targeted to domestic constraints (Portugal-Perez and Wilson 2008). The concept of trade facilitation used in this study includes all customs, transit and multimodal trade procedures, including transport and infrastructure issues (UNCTAD 2006). Within this context, three approaches have been used to quantify the economic impact of trade facilitation measures: Computable General Equilibrium (CGE) models which quantify effects on income and welfare, gravity models who focus on bilateral trade effects, and country-case studies.

The CGE approach usually estimate trade facilitation measures as an improvement in the productivity of the transport sector or as a reduction in trade costs. Within this framework, OECD (2003) find that developing countries will benefit the most from these reforms because of their less efficient border procedures, the relative importance of their trade flows in agri-food products and their higher share of small and medium-size exporting business. Nevertheless, as Wilson et al. (2009) point out, there is little data on the generalised parameters used to simulate trade facilitation improvements. Furthermore, even if these studies conclude that potential gains arise from trade facilitation reforms, they don’t identify which channels effectively affect transport productivity or trade costs.
The gravity model allows estimating the impact of different trade facilitation reforms on bilateral trade flows. Perhaps the major examples are Wilson et al. (2003, 2004) who analyse these measures in terms of port efficiency, customs environment, regulatory environment and electronic business-usage for Asian Pacific Economic Cooperation members and for a broader sample of 75 countries. They find that improvements in these fields, even from unilateral efforts, significantly increase both imports and exports. Likewise, Hoekman and Nicita (2008) estimate that a fall of 10% in the domestic cost of exporting would increase exports by about 4.7%.

Finally, country-case studies allow a broader analysis of trade facilitation programs. In term of costs of implementation, Duval (2006) presents the results of an expert survey on twelve trade facilitation measures. This study highlights the expert’s opinion that long-term benefits largely exceed perceived costs of implementation.

Besides, a growing body of the empirical literature considers that costs induced by internal capacity constraints are comparable, and even higher, than applied tariffs. Using a gravity model, Anderson and van Wincoop (2004) find that transportation, information and security costs for industrialized countries are equivalent to a 30% tariff applied on trade flows, with an even higher magnitude for developing countries. Abe and Wilson (2009) also find that facilitation measures addressed to port congestion could achieve equivalent impacts than across-the-board uniform tariff reduction. Taking into account the relative preference margins of developing countries, Hoekman and Nicita (2008, 2010) suggest that an improvement in logistic performance and trade facilitation are likely to have a better payoff for developing countries than further market opening. Portugal-Perez and Wilson (2008) find the same results for African exporters. Considering that negotiations on tariff reduction in Doha are lingering, these conclusions support the focus on internal trade costs reduction as an alternative development policy to WTO market opening for developing countries (Ikenson 2008, Hoekman and Nicita 2010).

Internal trade costs can be classified in two main categories: “natural” barriers like institutions, infrastructures and production costs, and trade policy barriers (De Melo and Grether, 2000, Anderson and van Wincoop, 2004, Gamberoni and Newfarmer, 2009). Using a gravity model, Gamberoni and Newfarmer (2009) find that they all matter to explain both
exports volumes and the probability to export for developing countries. Using the same methodology, François and Manchin (2007) find the same results and noted that North-South trade is more affected by infrastructure and institutions than by tariff barriers. Furthermore, Djankov et al. (2006) conclude that time delays are even more an issue for developing countries’ exports of perishable goods. Also, this study highlights that time burdens are explained at 75% by weak institutional features and at 25% by poor physical infrastructure.

Trade costs related to a lack of infrastructures:

Indeed, theoretical and empirical evidences suggest that infrastructure quantity and quality, and investments effectively affect exports (Bougheas et al. 1999, Limao and Venables 2001, Brun et al. 2005, Adam and Bevan 2006). Introducing an average of the density of the road network, the paved road network, the rail network and the numbers of phone lines per person in a gravity model, Limao and Venables (2001) find that the level of infrastructure is one of the main determinants of transport costs and explains approximately half of the low exports value of Sub-Saharan countries. Brun et al. (2005) conclude that a lack of infrastructure hits harder the bilateral trade between low-income countries and their exports to the North.

Furthermore, soft infrastructure, in the sense of efficiency of infrastructure services and related regulation, is also essential because of the high rents that prevail in every step of an often non-competitive trade logistic chain. Indeed, a growing literature suggest that transport costs are endogenous to the characteristic of goods been traded and the market or organizational structure of the industry providing the service (Hummels et al. 2008, Djankov and Sequeria 2009). These evidences suggest that barriers to trade need to be addressed by a concerted policy action and that technical assistance to upgrade logistics and fight corruption can play a substantial role in it (Hoekman and Nicita 2008, Portugal-Perez and Wilson 2008, Anderson and Marcouiller 2002).

There are also empirical evidences of the impact of a specific kind of infrastructure on exports. Freund and Weinhold (2004) find that a 10% increase in the number of a country’s web hosts is related to an export gain of around 0.2%. François and Manchin (2006) find that transport infrastructure is more relevant for low income countries, but that as income per capita rise communications becomes more important.
Trade costs related to weak institutions:

Findings on the effect of trade barriers due to institutional weakness on exports are less clear than for infrastructures. As an example, using indexes of the quality of institutions in a gravity model, François and Manchin (2007) find some ambiguous impacts on exports. Also, controlling for foreign market access and geography, Redding and Venables (2003)’s index of the protection of property rights and risk of expropriation does not appear as a robust determinant of export performance.

This ambiguity may be explained by the difficulty to measure institutional costs exclusively related to trade activities. Consequently, a few papers have tried to focus on more specific data. For example, Djankov and Sequeria (2009) estimate that in Southern Africa corruption into port institutions increase total shipping costs for a standard 20ft container by 14%. Anderson and Marcouiller (2002) also show that insecurity associated both with contractual enforcement problems and with transparency lowers international trade volumes significantly.

Finally, negotiations on multilateral and bilateral agreements by developing countries could also be considered as a trade cost influenced by their institutional capacity. Indeed, talks on rules of origins, for example, are very complex and with substantial consequences on export performance (Cadot et al. 2008, Carrère and de Melo, 2004). Also, as we will discuss it later, to increase the participation of developing countries on international standards organisations seems relevant to straightening their institutional capacity on these non-tariff barriers (Disdier et al. 2008).

3- Aid for trade data and descriptive statistics

These supply-side constrains we saw above need to be addressed by aid for trade, as part of the overall Official Development Assistance (ODA). The Credit Report System (CRS) database from the OECD employed to monitoring ODA provides us with data on commitments and disbursements by year, for every donor and recipient. It includes bilateral and multilateral donors. Nevertheless, considering that the International Financial Institutions (IFIs) do not report their sectoral disbursements to the CRS (OECD 2009)\(^5\), in our estimations we will only consider commitments.

\(^5\) Disbursements will be used for robustness.
We can see in Figure 1 that commitments of total ODA and sector allocable ODA have more than doubled in volume over the period 1995-2007, with a particularly strong growth since 2000 and the Paris Declaration on Aid Effectiveness\(^6\). Aid for trade also increased in volume since then, but more slowly, registering a 30% raise since 1995. Nevertheless, even if its volume has risen, we observe a declining share in total sector allocable ODA, from 35% in 1995 to 25% in 2007. This means that the increase in volumes is additional and not at the expense of a diversion of resources from other social or economic sectors.

Figure 1: Medium term trends in ODA and AfT

![Medium term trends in ODA and A4T](chart.png)

Source: Authors’ calculations

Following the OECD classification, aid for trade can be divided in four categories: technical assistance for Trade Policy and Regulation, Economic Infrastructure, Productive Capacity Building, and Trade-related Adjustment. Nevertheless, there is no consensus whether the Productive Capacity Building category need to be included on the agenda; whether aid for trade should be confined to reducing trade costs or, in addition, include support to increase the

\(^6\) The Paris Declaration endorsed on 2 March 2005, is an international agreement to which over one hundred Ministers, Heads of Agencies and other Senior Officials adhered and committed their countries and organisations to continue to increase efforts in harmonisation, alignment and managing aid for results with a set of monitorable actions and indicators.
productive and competitive capacity of the private sector. There is even less agreement on the need to include trade related adjustments costs (OECD 2006). Considering that the aim of this paper is to test the channels by which aid for trade can affect trade performance, we will only focus on aid for Trade Policy and Regulations and aid to Economic Infrastructures, because other pathways can be more difficult to measure.

Thus, the two categories covered in our study are:

1) **Trade Policy and Regulations**, which is almost exclusively delivered by technical assistance and can be considered as aid to institutions related to trade. In average between 2005 and 2007, this category account for 808 US$ Million (constant 2006) of commitments. It includes five sub-categories: projects and programs oriented to trade policy and administrative management, trade facilitation, regional trade agreements, multilateral trade negotiations and trade education/training. As an example, flows from this category aims to help countries to develop trade strategies, negotiate trade agreements and implement their outcomes (see Annex 1 for further details).

2) **Economic Infrastructure**, proxy for trade-related infrastructure, has the main objective to connect local markets to the global economy. In average between 2005 and 2007, this category received 12 939 US$ Million (constant 2006) of commitments. This category includes three sub-categories: aid for communications, energy and transport and storage. Projects or programs range from technical cooperation to policy planning for ministries to heavy constructions of roads, power plants or airports (see Annex 1 for further details).

We observe from Figure 2 and from Figure 3 and 4 in Annex 3 that Aid for Trade is not always allocated toward countries that need it the most. Indeed, some countries are bad performer in term of time delays to export and infrastructure quantity and quality, but still receive relatively less aid for trade per capita (Figure 5 and 6, Annex 3). Nevertheless, before advocating for an increase in aid for trade flows, it is its effectiveness and channels of transmission on trade outcomes that need to be at first investigated. We turn to this feature using an empirical analysis constructed in two steps. First, we test if institutions and infrastructure, our two potential channels of transmission, are indeed determinants of export performance. Secondly, we test the impact of aid for trade sectoral flows on the determinants that were highlighted in the first part.
Figure 2: Aide for Trade US$ per capita (2002-2007, Trade Policy and Regulations and Economic Infrastructure)

Source: Authors’ calculations

4- On the search for aid for trade effectiveness channels

In order to reveal internal determinants of export performance that can be influenced by aid for trade, we use a theoretical model developed by Redding and Venables (2003, 2004), which is based on an aggregation of gravity equations between partners and allows us to explain the total volume of exports for a country by demand conditions and internal supply-side characteristics.

4.1 Theorical background

The world is composed by $i = 1, ..., R$ countries whose tradable goods sectors produce a range of symmetric differentiated products. The model is based on a demand structure using symmetric constant elasticity of substitution (CES), imply an utility function of the form:

$$ U_j = \left[\sum_{i} n_i x_{ij}^{\sigma} \right]^{\frac{1}{\sigma-1}}, \sigma > 1 $$
With:

\(\sigma \) = elasticity of substitution between any pair of products

\(n_i \) = the set of varieties produced in country \(i \)

\(x_{ij} \) = country \(j \)’s consumption of a variety from \(n_i \), all such varieties are symmetric.

It should be noticed that at the beginning the range of products produced in each country and their prices are fixed as exogenous. This hypothesis will be released later in order to include general equilibrium relationships.

\(G_j \) is a price index in each country, which is constructed from the prices of all the varieties produced in \(i \) and sold in \(j \), \(P_{ij} \)

\[
(2) \quad G_j = \left[\sum_{i}^{R} n_i P_{ij}^{1-\sigma} \right]^{\frac{1}{1-\sigma}}
\]

\(E_j \) is the total expenditure of country \(j \) in differentiated products. The Shephard’s lemma on the price index allows to set the demand of country \(j \) for each variety,

\[
(3) \quad x_{ij} = P_{ij}^{-\sigma} E_j G_j^{(\sigma-1)}
\]

where \(\sigma \) is the \(j \)'s price elasticity of demand and \(E_j G_j^{(\sigma-1)} \) gives the position of the demand curve in market \(j \).

The authors fixed the same producer price, \(p_i \), for all the varieties coming from \(i \). Three trade costs are added to this price:

\[
p_{ij} = p_i t_i t_j T_{ij}
\]

where \(T_{ij} \) is the transport cost between countries. Furthermore, \(t_i \) and \(t_j \) are internal costs related to the delivery of the product to and from the exporter and partner customs. It should be noticed that these can depend on trade-related infrastructure, like the road or rail network, and on internal geography.

Thus, unlike Redding and Venables (2003, 2004) where these variables capture the internal geography, we will use them as a measure of infrastructure. Indeed, as we saw it earlier in the literature review, many studies underlines the importance of transport costs on the explanation
of developing countries’ trade (Limao and Venables 2001, Brun et al. 2005). Moreover, the internal geography is exogenous and cannot be influenced by aid for trade.

Thus, on the formulation of the value of exports from i to j we find a basis for the estimation of a gravity trade model:

(4) \[n_i p_i x_{ij} = n_i p_i^{1-\sigma} (t_i T_{ij})^{1-\sigma} E_j G_j^{\sigma-1} \]

where we recognise exporter and importer country characteristics, that determines the supply capacity \(n_i (p_i t_i)^{1-\sigma} \) and the market capacity \(E_j (G_j / t_j)^{\sigma-1} \) respectively.

As in Redding and Venables (2003, 2004), in the rest of the model these terms will be defined as:

(5) \[m_i \equiv E_i (G_i / t_i)^{\sigma-1} \text{and} \ s_i \equiv n_i (p_i t_i)^{1-\sigma}. \]

Considering so, equation (4) can we re-written on the form:

(6) \[n_i p_i x_{ij} = s_i (T_{ij})^{1-\sigma} m_j \]

Also, aggregating this equation between all importer for each i allows us to obtain each country’s overall export value, \(V_i \), which depends on supply capacity and foreign market access,

(7) \[V_i = n_i p_i \sum_{i=1}^{j} x_{ij} = s_i \sum_{j=1}^{i} (T_{ij})^{1-\sigma} m_j = s_i M_i \]

where \(M_i \) is the access to external markets for each exporter, and corresponds to the sum of market capacities of all partners, weighted by bilateral trade costs related to external geography:

(8) \[M_i \equiv \sum_{j=1}^{i} (T_{ij})^{1-\sigma} m_j \]

Thus, the total quantity demanded for each exporter, \(n_i x_i \), can be written on the form:

(9) \[n_i x_i = n_i \sum_{j=1}^{i} x_{ij} = s_i M_i \]

In order to endogenise supply capacity, the authors specify a supply function for exports \(\Omega \),

(10) \[n_i x_i = a_i \Omega \left(\frac{p_i}{c_i} \right), \text{avec} \ \Omega' > 0 \]
In this equation, Ω is the same for all countries, but parameters c_i and a_i are country specific. c_i measures the relative costs of producing in the export sector of country i and a_i measure the size of the economy.

A log-linearization of equations (9) and (10) giving us:

\[
(11) \quad \hat{x} = -\sigma \hat{\rho} + (1 - \sigma) \hat{\epsilon} + \hat{M} \quad \text{and}
\]

\[
\hat{n} + \hat{x} = \hat{a} + \omega (\hat{\rho} - \hat{\epsilon})
\]

These two equations allow us to eliminate the price term:

\[
(12) \quad \hat{x} (\omega + \sigma) + \sigma \hat{n} = \sigma \hat{a} + \omega \left[\hat{M} - \sigma \hat{\epsilon} + (1 - \sigma) \hat{\epsilon} \right]
\]

where ω captures the price elasticity of export supply, and $^\wedge$ indicates a proportional deviation from a reference point.

We chose a log specification because it allows us to take into account the cross country variation, and to interpret the coefficients that will be estimated empirically as elasticities.

Thus, following equation (11), the total value of exports $V_i = n_i p_i x_i = s_i M_i$ can be re-written as:

\[
(13) \quad \hat{V} = \hat{n} + \hat{\rho} + \hat{x} = \hat{a} - \omega \hat{\epsilon} + \left[\hat{M} + (1 - \sigma) \hat{\epsilon} - \hat{\epsilon} \right] \frac{(1 + \omega)}{\sigma}
\]

And finally, to obtain the equations that justify the empirical estimation that will be used in our paper, a further condition is needed, which is, the way that export volumes vary, between the number of varieties, n, and the output per variety, x.

Indeed, in a standard monopolistic competition model the output per commodity is a constant, $\hat{x} = 0$, implying that (13) becomes:

\[
(14) \quad \hat{V} = \hat{a} - \hat{\epsilon} \omega + \left[\hat{M} + (1 - \sigma) \hat{\epsilon} \right] \frac{(1 + \omega)}{\sigma}
\]

Nevertheless, if the number of varieties that can be produced by a country is fixed, $\hat{n} = 0$, equations (12) and (13) give us

\[
(15) \quad \hat{V} = \frac{(\sigma - 1)(\hat{a} - \hat{\epsilon} \omega + \hat{M} + (1 - \sigma) \hat{\epsilon}) (1 + \omega)}{(\sigma + \omega)}
\]
4.2 Empirical analysis

Thus, the empirical estimation that follows is derived from the last two final equations. The model can be translated in the following log-linear specification:

\[
(1) \quad \ln(V_i) = \beta_0 + \beta_1 \ln(GDP_i) + \beta_2 \ln(\text{Pop}_i) + \beta_3 \ln(M_i) + B_4 \ln(t_i) + \beta_5 \ln(c_i) + \epsilon_i
\]

Where \(\beta \) are parameters to be estimated. All variables are in logarithm in order to interpret the coefficients as elasticities. For the estimation, we use average values for the period 2002-2007 as some variables have reduced time variability in our sample. Furthermore, talks on trade oriented toward developing countries’ concerns started with the Doha Round in 2001. Thus, we can expect a change on donors and developing countries’ governments’ behaviour starting from this date.

The dependent variable implied by the theoretical model is total exports by country in constant US dollars \(V_i \). Nevertheless, as we focus on a set of highly heterogeneous developing countries, we choose to also normalize the export volumes by considering alternatively exports over GDP, \(\frac{\text{Exports}_i}{GDP_i} \), following Guillaumont (1988) and Grether and de Melo (1997)\(^7\). Furthermore, we subtracted from those two variables exports of oil and mineral resources. We believe that these two extractive sectors follow different economic mechanisms that those we want to reveal. Data was obtained from the World Trade Indicators (WTI) database constructed by The World Bank.

Two variables can be considered as potential channels of transmission for the aid for trade impact: \(t_i \) and \(c_i \), which capture the comparative costs of exporting in each country due to internal constraints.

The first variable, \(t_i \), is related to the infrastructure quantity and quality. More than geographical characteristic as in Redding and Venables (2003, 2004), it is the supply of infrastructure that undermines the export performance of a country. Following Limao and

\(^7\) Indeed, Guillaumont (1988) explain that an export over GDP measure is better than exports per capita, because this latest increase mechanically with the revenue per capita for a specific export rate.
Venables (2001), Brun et al. (2005) and François and Manchin (2007), we construct an index of infrastructure which includes km of road and paved road (on total area, in km²), and the number of subscribers to mobile and fixed lines (per 100 people) from the World Development Indicators (WDI) database. As in Brun et al. (2005) the two first variables are normalised by surface. The infrastructure index used in the rest of the paper is the first principal component obtained from our infrastructures variables by Principal Component Analysis (PCA) (François and Manchin 2007, Calderon and Servén 2004). This first component, associated with an Eigenvalue of 2.33, accounts for 77% of the variability of our sample and respectively applies the following weights to our three variables: 0.62, 0.62 and 0.45. We expect a positive effect of this variable on exports.

Another comparative costs of exporting due to internal constraints is the quality of institutions, c_i, in particular for developing countries (Redding and Venables 2003, 2004, Djankov et al. 2006, Francois and Manchin 2007). We follow Djankov et al. (2006) and Gamberoni and Newfarmer (2009) using the number of days needed to export from the Doing Business database. This variable measures the time required to move standard cargo from the gate factory in the economic capital to the ship in the most easily accessible port. Indeed, three-quarters of delays seems to be due to administrative constraints, such as multiple procedures, taxes, licensing and inspection of containers (Djankov et al. 2006). Thus, an increase in days indicates deterioration in the quality of institutions related to trade. Therefore, we expect this variable to play a negative impact on exports.

Another variable justified by the theoretical model is country’s size. At first, we will capture it by population, Pop_i, and GDP in 2000 constant US dollars, GDP_i, from the WDI database. When moving to $\frac{Exports_i}{GDP_i}$ as the dependent variable, we will then consider GDP per capita in 2000 constant US dollars $\frac{GDP_i}{Pop_i}$. These two variables are measures of economic size, and their relations with exports are ambiguous. In one hand, we expect richer countries to have a larger capacity to export. In the other hand, an increase in revenue indicates that local production can serve a larger domestic market. We also expect population to be negatively related to the dependent variable, as larger countries face relatively lower cost to

8 PCA allows us to identify clusters of points in the data, and to identify linear combinations of variables that reduce the size of the index without losing much information.
trade domestically than smaller ones and benefit from increasing returns. This variable can also be a proxy for relative factor endowments (Brun et al. 2005).

International market access for exports from \(i \), \(M_i \), is captured by the market access due to tariff and non-tariff barriers (\(MA-OTRI \)) borrowed from Kee et al. (2009). This variable captures the distortions than the rest of the world’s tariffs and non-tariffs barriers\(^9\) have on exports from country \(i \). We expect it to be negatively related to the dependent variable.

In order to address endogeneity problems due to reverse causality or any remaining unobserved heterogeneity that may lead to omitted-variable bias, we instrument infrastructure and institutions. Indeed, there is a potential reverse causality between the export over GDP ratio and our two interest variables, because countries with better export performance can be more interested in reducing trade costs related to these variables.

To control for this potential problem, infrastructures are instrumented by two variables reflecting internal geography from Gallup et al. (1999): the proportion of land area and population within 100km of the coast or a navigable river in 1995. We expect that countries with better geography conditions will tend to supply more infrastructure related to trade. Indeed, Canning (1998) explains that infrastructure has network effects, and the internal geography, such as the location of rivers and mountains, determine their supply. Also, these variables can be considered as exogenous to the error term\(^{10}\). Concerning institutions, we decided to follow Djankov et al. (2006) and use the number of documents needed to export as an instrument for the time measure. The idea is that the extra paperwork due to more documents extends the number of days for exports processing, but are unlikely to be affected by export volumes. Indeed, more trade may extend the waiting time for a document, but certainly not the number of documents needed. Data comes from the Doing Business database from the World Bank.

Thus, the export equations to be estimated by Two Step Least Squares (2SLS) are the following:

\(^{9}\) The non-tariffs barriers included in this measure are: price control measures, quantity restrictions, monopolistic measures, technical regulations and agricultural domestic support (Kee et al. 2009).

\(^{10}\) The correlation between exports over GDP ratio and the two infrastructure instruments is very low (18%) and not significant.
As a robustness check, following Lederman et al. (2010), we choose to introduce sequentially two additional control variables outside of the model. We control for the trade restrictiveness imposed by country i on its imports from the rest of the world\footnote{This variable captures the relative price distortion created by the trade policy imposed by i on its own imports.} (OTRI) from Kee et al. (2009). As Brun et al. (2005) noted, a tariff applied on imports is equivalent to an export tax. Thus, we expect a negative relationship between this variable and exports over GDP. Finally, we also introduce the volatility of the exchange rate in country i as a proxy for business climate (Lederman et al. 2010) (This variable is measured by the coefficient of variation of the dollar to the local currency exchange rate and data comes from the International Financial Statistics database of the International Monetary Fund (IMF)). We expect this variable to be related negatively to export performance.

4.3 Results

The results for equation (2a) using OLS and 2SLS are shown in Table 1. In this table, we present the result of the equation reflecting directly the outcome of the formulation of Redding and Venables (2003, 2004).

In the first column, using OLS estimator, all of our variables turn out significant with the expected sign (unless population that appears with a positive sign). Nevertheless, from the theoretical model, we have to check if those results hold when imposing the constraint of a coefficient relative to GDP set to unity (when using the ratio of exports over GDP has the dependent variable)\footnote{For further details, see Redding and Venables (2003, 2004)}. As displays in column 2, in that case, only Infrastructures seem to have an impact on exports. This is also the case in column (3), once our infrastructure and institutions variables are instrumented, only the level of infrastructure seems to be correlated with exports. The coefficient is positive as expected. Geographic variables used to explain infrastructure have a fairly strong explaining power as the first stage F-statistic is above the rule of thumb of 10, which is the standard threshold for weak instrumentation. The number of documents needed

$$
(2a) \quad \ln(V_i) = \beta_0 + B_1 \ln(\text{Infrastructures}_i) + \beta_2 \ln(\text{Time}_i) + \beta_3 \ln(\text{GDP}_i) + \beta_4 \ln(\text{Pop}_i) + \beta_5 \ln(\text{MA-OTRI}_i) + \varepsilon_i
$$

$$
(2b) \quad \ln \left(\frac{\text{Exports}_i}{\text{GDP}_i} \right) = \beta_{0i} + B_1 \ln(\text{Infrastructures}_i) + \beta_2 \ln(\text{Time}_i) + \beta_3 \ln \left(\frac{\text{GDP}_i}{\text{Pop}_i} \right) + \beta_4 \ln(\text{Pop}_i) + \beta_5 \ln(\text{MA-OTRI}_i) + \varepsilon_i
$$
to export seems to be also a good instrument even if, in that case, the F-stat is slightly lower (See Annex 4 for 2SLS first stage results).

Table 1: Trade costs and exports in constant US$

<table>
<thead>
<tr>
<th></th>
<th>(1) OLS</th>
<th>(2) OLS</th>
<th>(3) 2SLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrastructures</td>
<td>1.211 (0.247)***</td>
<td>0.465 (0.204)**</td>
<td>1.838 (0.472)***</td>
</tr>
<tr>
<td>Time</td>
<td>-0.387 (0.133)***</td>
<td>-0.130 (0.171)</td>
<td>-0.315 (0.298)</td>
</tr>
<tr>
<td>GDP</td>
<td>0.607 (0.078)***</td>
<td>0.461 (0.147)***</td>
<td>0.461 (0.147)***</td>
</tr>
<tr>
<td>Pop</td>
<td>0.213 (0.077)***</td>
<td>-0.135 (0.042)***</td>
<td>-0.135 (0.042)***</td>
</tr>
<tr>
<td>Ma-Otri</td>
<td>-0.698 (0.256)***</td>
<td>-0.164 (0.287)</td>
<td>-0.758 (0.306)**</td>
</tr>
<tr>
<td>Constant</td>
<td>3.532 (1.104)***</td>
<td>0.502 (1.099)</td>
<td>3.615 (1.785)**</td>
</tr>
<tr>
<td>Observations</td>
<td>88</td>
<td>88</td>
<td>84</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.93</td>
<td>0.93</td>
<td>11.01</td>
</tr>
<tr>
<td>First stage F-stat for Infrastructures</td>
<td>7.98</td>
<td>7.98</td>
<td>7.98</td>
</tr>
</tbody>
</table>

Robust standard errors in parentheses
* significant at 10%; ** significant at 5%; *** significant at 1%
All variables are in logarithm.

The results for equation (2b) using OLS and 2SLS\(^{13}\) are shown in Table 2. As earlier, we can see in column (2), that once our infrastructure and institutions variables are instrumented, only the level of infrastructure seems to be correlated with the export ratio\(^{14}\). As a robustness check, we then introduce sequentially additional control variables in column (3) and (4). The results related to the infrastructure and institutions channels remain the same both in magnitude and in significance. As one can see in column (4), adding the Own Market Access variable \(OTRI\), reduce dramatically our sample\(^{15}\) without modifying our results. Our preferred specification is shown in column (5) where we dropped two outliers\(^{16}\) identified using the method of Hadi (1994). The estimation results indicate that infrastructure is a potential channel of transmission by which aid for trade might affect export performance. Indeed, an increase of 10% of the quality and quantity of infrastructure leads to an average

\(^{13}\) Using alternatively Limited Information Maximum Likelihood (LIML) estimator leads to the same results in term of significance levels.

\(^{14}\) As a matter of fact, we try to disentangle our broad infrastructure effect by considering each of our three infrastructure variables (road, paved road and phone subscribers) instead of the infrastructure index in equation (2b). Using alternative instruments as surface area in km², density of population or the share of urban population, we find that it is actually the density of the paved road network that seems to matter the most (results upon request).

\(^{15}\) The anti-trade bias of the import regime \(OTRI\) is not statistically significant, suggesting that general equilibrium effects are not a strong determinant of exports.

\(^{16}\) Guinea and Zimbabwe appears as outliers
increase in exports over GDP of 10.7%. This is a high economic effect that follows the extensive literature on infrastructure and trade (Limao and Venables 2001, Brun et al. 2005, François and Manchin 2007, Gamberoni and Newfarmer 2009). On the other hand, institutions Time do not seem to be a determinant of export performance. The statistical significance of the time to export of the OLS estimation disappears once we control for endogeneity. This result is similar with Lederman et al. (2010).

In the final column of Table 2, we dropped from the sample all the countries that are not receiving aid for trade. Clearly, one can argue that those countries are richer and then might influence our results and their interpretations. It is apparently not the case. Indeed, even with this reduced sample, the coefficient for infrastructure remains broadly the same, suggesting that the relation we investigate on is robust and relatively stable among income groups. Likewise, the coefficient for our institution variable remains unsignificant.

Finally, it should be noticed that results are robust to the inclusion of regional dummies (results under request).

Regarding the other explanatory variables, GDP/Pop has a negative and statistically significant sign, suggesting that richer countries exhibit an export to GDP ratio relatively lower than poor ones. The negative and significant sign for Pop also indicates that countries with larger markets export relatively less. The restrictiveness faced by exporters in the rest of the world MA – OTRI has a negative impact on exports. The business climate Volat do not seems to be a significant determinant of export performance ones we control for outliers.

In order to further assess the robustness of our results, we use alternative measures of our institutional variable (Annex 3). As the reverse causality might still be an issue and as using the number of documents needed to export might seem less appropriate for alternative institutional variables, we had to find alternative instruments. We choose to rely on the work of Laporta et al. (1999) by using as instruments binary variables for French, English, German and Scandinavian legal origins.

The time to export measure was replaced by the efficiency of the clearance process by border control agencies, including customs (Customs_Lpi), from the Logistic Performance Index (LPI). The LPI has been widely used by recent studies on trade facilitation (Portugal-Perez and Wilson 2008, Gamberoni and Newfarmer 2009, Hoeckman and Nicita 2010). We do not find any significant impact on exports. Following Anderson and Marcouiller (2002) and Sequeira and Djankov (2009) we also use two variables of control of corruption; the first one
from the Polity IV database (Pol4_corrupt) and the other (Icrg_corrupt) from the International Country Risk Guide (ICRG) but without finding any significant impact. This is quite surprising considering the extensive literature that designates institutions as a determinant of trade performance. Nevertheless, it should be noticed that across all estimations the infrastructure proxy is positive and highly significant.
Table 2: Trade costs and exports over GDP ratio

<table>
<thead>
<tr>
<th>Exports (without oil and minerals)/GDP</th>
<th>All developing countries</th>
<th>Aid for Trade recipients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td>OLS</td>
<td>2SLS</td>
</tr>
<tr>
<td>Infrastructures</td>
<td>0.641</td>
<td>1.384</td>
</tr>
<tr>
<td></td>
<td>(0.262)**</td>
<td>(0.385)**</td>
</tr>
<tr>
<td>Time</td>
<td>-0.312</td>
<td>-0.167</td>
</tr>
<tr>
<td></td>
<td>(0.124)**</td>
<td>(0.256)</td>
</tr>
<tr>
<td>GDP/Pop</td>
<td>-0.195</td>
<td>-0.347</td>
</tr>
<tr>
<td></td>
<td>(0.079)**</td>
<td>(0.143)**</td>
</tr>
<tr>
<td>Pop</td>
<td>-0.172</td>
<td>-0.175</td>
</tr>
<tr>
<td></td>
<td>(0.035)**</td>
<td>(0.035)**</td>
</tr>
<tr>
<td>Ma-Otri</td>
<td>-0.541</td>
<td>-0.677</td>
</tr>
<tr>
<td></td>
<td>(0.244)**</td>
<td>(0.259)**</td>
</tr>
<tr>
<td>Volat</td>
<td>0.433</td>
<td>0.697</td>
</tr>
<tr>
<td></td>
<td>(0.100)**</td>
<td>(1.356)</td>
</tr>
<tr>
<td>Otri</td>
<td>-0.023</td>
<td>(0.151)</td>
</tr>
<tr>
<td>Constant</td>
<td>6.978</td>
<td>7.074</td>
</tr>
<tr>
<td></td>
<td>(0.889)**</td>
<td>(1.691)**</td>
</tr>
<tr>
<td>Observations</td>
<td>96</td>
<td>91</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.41</td>
<td>0.38</td>
</tr>
<tr>
<td>First stage F-stat for Infrastructures</td>
<td>10.83</td>
<td>10.93</td>
</tr>
<tr>
<td>First stage F-stat for Time</td>
<td>7.90</td>
<td>6.61</td>
</tr>
<tr>
<td>Outliers (HADI) (p>0.05)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Robust standard errors in parentheses
* significant at 10%; ** significant at 5%; *** significant at 1%

Instruments used are: documents needed to export for the institutional variable, and the proportion of land area and population within 100km of the coast or a navigable river in 1995 for the infrastructure variable. All variables are in logarithm.
5- Aid for trade and infrastructure

5.1 Empirical analysis

Since only infrastructures appear as a determinant of export performance, we now turn to test the effectiveness of aid for trade. First, we want to check that the level of infrastructure is indeed the channel through which aid for trade impacts exports. In order to do so, we include the logarithm of aid for trade per capita AfT_{pc} in equation (2b) and sequentially add our infrastructure and institution variables. As it can be seen, in the first column of Table 3, aid for trade seems to have a positive and significant impact on the exports over GDP ratio when we do not control for either the infrastructure or the institution channel. Nevertheless, aid for trade remains significant only in column (3) when we only introduce our trade related institutions variable. In column (2) and (4), as soon as we control for the level of infrastructure, the significance on the aid for trade variable disappears. Those results seem to confirm that it is only through its impact on the infrastructure level that aid for trade influences export performance. Thus, aid for trade and more particularly aid to economic infrastructure enhance the export over GDP ratio. It seems then pertinent to test the impact of aid to infrastructure on our infrastructure index. Indeed, a lack of trade-related infrastructure can discourage investment oriented toward the tradable sector.

Table 3: Aid for trade, infrastructure and institutions

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OLS</td>
<td>2SLS</td>
<td>2SLS</td>
<td>2SLS</td>
</tr>
<tr>
<td>GDP/Pop</td>
<td>0.156</td>
<td>-0.222</td>
<td>-0.014</td>
<td>-0.268</td>
</tr>
<tr>
<td></td>
<td>(0.069)</td>
<td>(0.171)</td>
<td>(0.155)</td>
<td>(0.175)</td>
</tr>
<tr>
<td>Pop</td>
<td>-0.087</td>
<td>-0.104</td>
<td>-0.093</td>
<td>-0.123</td>
</tr>
<tr>
<td></td>
<td>(0.043)</td>
<td>(0.050)</td>
<td>(0.044)</td>
<td>(0.056)</td>
</tr>
<tr>
<td>Ma-Otri</td>
<td>-0.338</td>
<td>-0.690</td>
<td>-0.316</td>
<td>-0.580</td>
</tr>
<tr>
<td></td>
<td>(0.228)</td>
<td>(0.302)</td>
<td>(0.215)</td>
<td>(0.295)</td>
</tr>
<tr>
<td>AfT_pc</td>
<td>0.113</td>
<td>0.099</td>
<td>0.100</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>(0.052)</td>
<td>(0.061)</td>
<td>(0.057)</td>
<td>(0.064)</td>
</tr>
<tr>
<td>Infrastructures</td>
<td>1.709</td>
<td>1.568</td>
<td>1.568</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.750)</td>
<td>(0.671)</td>
<td>(0.671)</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>-0.648</td>
<td>-0.361</td>
<td>-0.361</td>
<td>-0.342</td>
</tr>
<tr>
<td></td>
<td>(0.529)</td>
<td>(0.529)</td>
<td>(0.529)</td>
<td>(0.529)</td>
</tr>
<tr>
<td>Constant</td>
<td>2.623</td>
<td>4.443</td>
<td>6.118</td>
<td>6.573</td>
</tr>
<tr>
<td></td>
<td>(1.039)</td>
<td>(1.492)</td>
<td>(3.219)</td>
<td>(2.649)</td>
</tr>
</tbody>
</table>

Robust standard errors in parentheses
* significant at 10%; ** significant at 5%; *** significant at 1%
Instruments used are: documents needed to export for the institutional variable, and the proportion of land area and population within 100km of the coast or a navigable river in 1995 for the infrastructure variable.
All variables are in logarithm.
In order to further investigate on this issue, we follow Canning (1998) and the literature on economic geography, urban economics and the determinants of public investment in infrastructure. The equation to be tested is the following:

\[
\ln(\text{Infrastructures}_i) = \gamma_0 + \gamma_1 \ln(\text{Infrastructure}_\text{aid}_pc_i) + \gamma_2 \ln(\text{ODA}_pc_i) + \gamma_3 \ln(\text{Pop}_i) + \\
\gamma_4 \ln\left(\frac{\text{GDP}}{\text{Pop}_i}\right) + \gamma_5 \ln(\text{area}_i) + \gamma_6 (\text{pop100km}) + \gamma_7 (\text{land100km}) + \gamma_8 \ln(\text{pop}_\text{density}) + \\
\gamma_9 \ln(\text{urbanization}_i) + \gamma_{10} \ln(\text{rule_of_law}_i) + \eta_i
\]

Where \(\gamma \) are the parameters to be estimated. We use averaged data over the period 2002-2007. The dependant variable is the same infrastructure index \(\text{Infrastructures}_i \) used in the previous analysis. \(\text{Infrastructure}_\text{aid}_pc_i \) is aid commitments for trade-related infrastructure per capita in constant US dollars of 2000, in average for the period 2002-2007. We use aid commitments in our analysis as the disbursements are not systematically reported by IFIs in the CRS. This variable contains assistance for transport infrastructure, storage and communications (but not aid for the energy sector) in order to remain consistent with our infrastructure index. Finally, to test for the existence of a different effect of sectoral aid over total aid, we also include total ODA commitments per capita in constant US dollars of 2000 \(\text{ODA}_pc_i \). Data comes from the CRS database collected by the OECD.

Following Canning (1998), Randolph et al. (1996), Fay and Yepes (2003) and Esfahani and Ramirez (2002), we introduce the population \(\text{Pop}_i \) and GDP per capita \(\frac{\text{GDP}}{\text{Pop}_i} \) in order to control for demand effects and the cost of supply. Data comes from the World Bank’s WDI. We expect a positive influence of these two variables on our infrastructure index. Geography will be captured by two groups of variables related to the shape of a country and to urban economics (Straub 2008). Firstly, we control for networks effect related to the shape of a country using the proportion of land area \(\text{land100km} \) and population \(\text{pop100km} \) within 100km of the coast or a navigable river in 1995, and surface in squared kilometers \(\text{area}_i \). Secondly, we try to capture economies of scale induced by networks using the average population density (population per square kilometer) \(\text{pop}_\text{density}_i \) and the degree of
urbanization (the share of population in urban areas) \textit{urbanization}. Indeed, costs of providing infrastructure in cities are lower. Also, Canning (1998) noted that the degree of urbanization is also a good proxy for the sectoral structure of production, since high values for this variable are associated with more manufacturing and less agricultural activities. Considering that the manufacture sector highly relies on infrastructures, we expect this relationship to be positive. Last but not least, we control for the quality of institutions as Esfahani and Ramirez (2003) explain that production in infrastructure is highly capital intensive and potential investors are concerned about the possibilities of ex-post expropriation of their quasi-rents through nationalizations or government investments. The institutional quality is approximated by the rule of law variable \textit{rule of law}, from the Polity IV database.

In order to address the endogeneity problem due to reverse causality, measurement error in the data or any remaining unobserved heterogeneity that may lead to omitted-variable bias, we choose to propose a new instrument for aid for infrastructure: the number of privatizations in the infrastructure sector between 2000 and 2007. Indeed, we can expect a reverse causality problem because aid for infrastructure is almost certainly allocated toward countries that lag behind. The data was retrieved from the World Bank’s Privatisation Database17. This database site contains data on the number and sale price of privatization transactions of over $1 million, carried out in developing countries between 2000 and 2007. It only includes transactions which generated proceeds or monetary receipts to the government resulting from partial and full divestitures, concessions, management contracts, and leases. Thus, only those transactions that generated revenue for the government from privatization or private sector participation in an existing state-owned enterprise or other government assets (such as wireless license sales) are included. Transactions in infrastructure include those in transportation, water and sewerage, telecommunications, natural gas transmission and distribution, and electricity generation, transmission, and distribution. The dataset covers 99 developing countries. The idea is that ODA is often conditioned to the implementation of structural adjustment plans, which includes the privatization of public sector enterprises, particularly in the case of telecommunications. Furthermore, in order to reduce the costs associated with the structural adjustment, privatization is often followed hand by hand with assistance directed toward sectors that were reformed. Thus, we expect that the number of

17 http://rru.worldbank.org/Privatization/
privatizations explains the aid for infrastructure received without directly affecting our infrastructure indicator18.

5.2 Results

The results from the estimation of equation (3) are shown in Table 4 using OLS and 2SLS. Across all specifications, once instrumented, the aid for infrastructure per capita variable $\text{Infrastructure_aid_pc}_i$ appears to have a positive and statistically significant effect on infrastructures. As before, we choose to introduce additional controls sequentially. For column (2) to (5), our coefficient of interest remains remarkably stable both in magnitude and in significance. Indeed, column (5) suggests that an increase of 10\% in aid for infrastructure per capita leads to an increase of the quantity and quality of infrastructures of 1\%. Results are highly significant at a 1\% and robust to outliers (column 6)19.

Regarding the other explanatory variables, GDP per capita $\frac{\text{GDP}}{\text{Pop}_i}$ appears with a positive and statistically significant sign, suggesting that infrastructure supply increase with revenue. As Canning (1998) noted, geographical variables have the biggest strong explanatory impact. The surface in squared kilometers area_i and the proportion of population within 100km of the coast or a navigable river in 1995 pop100km_i are highly significant. The degree of urbanization urbanization_i, proxy for the cost of supply of infrastructure and for the manufacture sector, is also positive. Institutions rule_of_law_i do not appear as a determinant of infrastructure quantity and quality.

Finally, we observe that assistance to infrastructure has a clearly different effect than total ODA per capita ODA_pc_i on our dependent variable. In every specification total ODA seems to have a fairly robust negative influence on the level of infrastructure. Nevertheless, this result might most certainly be due to a reverse causality problem. As a robustness check, we try to instrument total ODA by the voice and accountability variable from the Polity IV database.

18 This hypothesis is confirmed by the inexistent correlation between our instrument and the infrastructure index.

19 Outliers are Jamaica, Burundi, Philippines, Sri Lanka, Rwanda, India, Mauritius and Bangladesh
Indeed, a majority of donors include institutional features in their aid allocation formula to improve both aid related incentives and effectiveness. We effectively observe that the significance of the ODA per capita variable disappears once endogeneity is taken into account (column 7, Table 4).

As an additional robustness check, we run the same regression (3) by using aid disbursements instead of commitments (column 8, Table 4). These results need to be considered with caution because, as explained earlier, IFIs do not report their disbursements to the CRS. Nevertheless, the aid for infrastructure variable still appears positive and highly significant.
Table 4: Aid for infrastructures and infrastructures

<table>
<thead>
<tr>
<th>Infrastructures</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrastructure aid pc</td>
<td>0.003</td>
<td>0.221</td>
<td>0.107</td>
<td>0.110</td>
<td>0.114</td>
<td>0.102</td>
<td>0.105</td>
<td>0.102</td>
</tr>
<tr>
<td>ODA pc</td>
<td>0.085</td>
<td>-0.390</td>
<td>-0.197</td>
<td>-0.190</td>
<td>-0.193</td>
<td>-0.180</td>
<td>-0.185</td>
<td>-0.157</td>
</tr>
<tr>
<td>_pop</td>
<td>(0.059)</td>
<td>(0.177)**</td>
<td>(0.069)**</td>
<td>(0.058)**</td>
<td>(0.061)**</td>
<td>(0.050)**</td>
<td>(0.050)**</td>
<td>(0.046)**</td>
</tr>
<tr>
<td>GDP/Pop</td>
<td>0.201</td>
<td>0.248</td>
<td>0.214</td>
<td>0.171</td>
<td>0.184</td>
<td>0.153</td>
<td>0.154</td>
<td>0.206</td>
</tr>
<tr>
<td>Lnd100km</td>
<td>0.026***</td>
<td>(0.049)*****</td>
<td>(0.026)*****</td>
<td>(0.030)*****</td>
<td>(0.033)*****</td>
<td>(0.033)*****</td>
<td>(0.033)*****</td>
<td>(0.049)*****</td>
</tr>
<tr>
<td>Area</td>
<td>-0.132</td>
<td>-0.460</td>
<td>-0.418</td>
<td>-0.225</td>
<td>-0.223</td>
<td>-0.443</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pop100km</td>
<td>(0.025)*****</td>
<td>(0.353)</td>
<td>(0.351)</td>
<td>(0.319)</td>
<td>(0.325)</td>
<td>(0.309)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pop_density</td>
<td>-0.319</td>
<td>-0.276</td>
<td>-0.097</td>
<td>-0.094</td>
<td>-0.280</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urbanpop</td>
<td>0.136</td>
<td>0.126</td>
<td>0.212</td>
<td>0.215</td>
<td>0.098</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rule_of_law</td>
<td>0.500</td>
<td>1.869</td>
<td>0.364</td>
<td>-0.028</td>
<td>-0.029</td>
<td>-0.207</td>
<td>-0.199</td>
<td>-0.304</td>
</tr>
<tr>
<td>Constant</td>
<td>0.693</td>
<td>(1.234)</td>
<td>(0.691)</td>
<td>(0.590)</td>
<td>(0.602)</td>
<td>(0.621)</td>
<td>(0.629)</td>
<td>(0.554)</td>
</tr>
<tr>
<td>Observations</td>
<td>77</td>
<td>77</td>
<td>68</td>
<td>68</td>
<td>68</td>
<td>60</td>
<td>60</td>
<td>68</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.61</td>
<td>0.11</td>
<td>0.61</td>
<td>0.65</td>
<td>0.64</td>
<td>0.65</td>
<td>0.64</td>
<td>0.64</td>
</tr>
<tr>
<td>First stage</td>
<td>5.19</td>
<td>9.22</td>
<td>8.97</td>
<td>8.59</td>
<td>15.40</td>
<td>7.81</td>
<td>10.79</td>
<td></td>
</tr>
</tbody>
</table>

Robust standard errors in parentheses
* significant at 10%; ** significant at 5%; *** significant at 1%
In column (6) and (7) eight outliers were dropped using the HADI procedure (Jamaica, Burundi, Philippines, Sri Lanka, Rwanda, India, Mauritius, Bangladesh)
Aid to infrastructure per capita is instrumented by the number of privatizations in the infrastructure sector between 2000 and 2007. Total ODA per capita is instrumented by the voice and accountability variable from the Polity IV dataset.
All variables are in logarithm except Lnd100km and Pop100km.
6- Concluding remarks

The actual slow down of multilateral talks has highlighted the relevance of trade facilitation measures as a complementary economic policy for developing countries. Indeed, recent empirical studies confirm that benefits from a reduction in internal trade costs can be as large as a tariff reduction within the Doha Round (Ikenson 2008, Hoekman and Nicita 2008, 2010).

Nevertheless, despite the attractiveness of the Aid for Trade initiative for policy makers, there is only scare evidence on the effectiveness of such assistance. We fill this gap by proposing a two step analysis that allows us to disentangle the channel by witch aid for trade enhance export performance. Our results indicate that a 10% increase in aid to infrastructure commitments leads to an average increase of the exports over GDP ratio of an aid recipient of 1.22%\(^\text{20}\). Accordingly, considering the coefficient of the MA-OTRI variable in Table (2) for our preferred specification, it is also equivalent to a 2.3% reduction of the tariff and non-tariff barriers. This highlights the very high economic impact throughout the channel of infrastructures. Thus, our analysis seems to support the view that aid for trade might be a powerful instrument to assist developing countries in their attempt to enhance export performance and integration into the global economy while the multilateral talks within the Doha round are lingering on.

\(^{20}\) We saw in Table 2, column (5) that an increase of 10% of the infrastructure index leads to an average increase of 10.7% in export performance. Furthermore, an increase of 10% in aid to infrastructure commitments leads to an average increase of the infrastructure index of 1.14% (Table 4, column 5).
Annex 1:

Trends and distribution of aid for Trade Policy and Regulations and aid to Economic Infrastructure

1) Trade Policy and Regulations

We observe that in average between 2005 and 2007, 70% of the flows are allocated to the trade policy and administrative management sub-category, which primarily consist in technical assistance to trade ministries and government (figure 6). Regional trade agreements sub-category is in 2nd position, certainly correlated to the proliferation of North-South bilateral trade agreements and South-South regional integration. Finally, trade facilitation, which consists in a simplification and harmonisations of trade procedures, also takes an important share with 13% of the total.

Figure 7:

Sub-category distribution inside Trade policy and regulation, mean shares 2005-2007

- 70% Trade policy and administrative managment
- 13% Trade facilitation
- 11% Regional trade agreements
- 3% Multilateral trade negotiations
- 3% Trade education/training

Source: Authors’ calculations
In figure 7 we also note that the trade policy and regulation category has an increasing trend, particularly strong in key dates like the opening of Doha negotiations in 2001 and after the Hong Kong Ministerial Conference in 2005, illustrating the common idea that a lack of institutional capacities are one of the biggest obstacles for developing countries to connect to global markets. From 1995 to 2000, donors and developing countries were exclusively focused in trade policy and administrative management (Figure 8). Since 2001 other sub-categories appeared, but this former still has the biggest share in total flows (some 65% of the total). We particularly note a rising weight of the trade facilitation sub-category since 2001, which is coherent with the increasing importance of this file in WTO negotiations.

Figure 8: Sub-category distribution inside the Trade policy and regulation framework

![Sub-category distribution inside the Trade policy and regulation framework](image1)

Source: Authors’ calculations

Figure 9: Sub-category distribution inside the Trade policy and regulation framework (percentage)

![Sub-category distribution inside the Trade policy and regulation framework (percentage)](image2)

Source: Authors’ calculations

2) Economic Infrastructure, proxy for trade-related infrastructure

We observe that in average between 2005 and 2007, aid to transport and storage takes over half of the share in total assistance to infrastructure (Figure 9). The 2nd share is for energy generation and supply with 41% of the total. Finally, the residual share attributed to communication goes in line with the extremely fast return on investment of this sector, which is mainly financed by private capital.
We observe a decline in volumes of aid to economic infrastructures between 1995 and 2001, but since then this category hasn’t stop growing, recovering the volume of 1995 ten years later (Figure 10). This evolution seems to illustrate the decreasing interest of donors to invest in big infrastructure programmes in late 90’s. We also note that aid to transport and storage takes over half of the share in total assistance to infrastructure during the period (Figure 10), and that volumes to this sub-category have been relatively stable considering the decreasing trend of 1995-2000 (Figure 11).
Figure 11:

Source: Authors’ calculations

It should be noticed that as to be considered as part of the aid for trade agenda, projects and programs need to be linked to trade-related development priorities in the partner country’s national development strategy. Even if aid for trade has always existed as part of ODA flows
Annex 2:

Origins of Aid for trade

The Uruguay Round negotiations seems to be the starting point for many developing countries, who started to be full participants of the multilateral trading system. Nevertheless, these commitments appeared quickly hard to apply because of a lack of institutional capacities. In response to this, two technical assistance packages were created, giving birth to the “narrow” definition of aid for trade: the Joint Integrated Technical Assistance Program (JTAP) for African economies and the Integrated Framework for Trade-Related Technical Assistance to the Least Developed Countries (IF). Later, during the 2005 Hong Kong Ministerial Conference was created the broad “Aid for Trade” initiative, which covers many sectors of ODA such as trade-related infrastructure development, supply-side capacity building and trade-related adjustments cost.
Annex 3:

Figure 3: Number of days to export (2005-2007)

Source: Authors’ calculations

Figure 4: Infrastructure Index (2002-2007)

Source: Authors’ calculations
Figure 5: Correlation between Infrastructure and Aid to Infrastructure (2002-2007).

Source: Authors’ calculations

Figure 6: Correlation between Number of days to export and Aid to Trade-related Institutions (2002-2007).

Source: Authors’ calculations
Annex 4:

Table 5: Instrumentation of equation (2b)

<table>
<thead>
<tr>
<th></th>
<th>(1) Infrastructures</th>
<th>(2) Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP/Pop</td>
<td>0.212 (0.022)***</td>
<td>-0.189 (0.037)***</td>
</tr>
<tr>
<td>Pop</td>
<td>0.008 (0.017)</td>
<td>-0.010 (0.021)</td>
</tr>
<tr>
<td>Ma-Otri</td>
<td>0.110 (0.095)</td>
<td>0.047 (0.117)</td>
</tr>
<tr>
<td>Lnd100km</td>
<td>0.832 (0.184)***</td>
<td>0.600 (0.257)***</td>
</tr>
<tr>
<td>Pop100km</td>
<td>-0.685 (0.183)***</td>
<td>-0.751 (0.236)***</td>
</tr>
<tr>
<td>Documents</td>
<td>-0.313 (0.113)***</td>
<td>0.658 (0.215)***</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.446 (0.402)</td>
<td>3.671 (0.809)***</td>
</tr>
</tbody>
</table>

Observations: 91
R-squared: 0.81

Robust standard errors in parentheses
* significant at 10%; ** significant at 5%; *** significant at 1%
All variables except instruments are in logarithm except Lnd100km and Pop100km.

Table 6: Instrumentation of equation (3)

<table>
<thead>
<tr>
<th></th>
<th>Infrastructure aid pc</th>
<th>ODA_pc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pop</td>
<td>-0.862 (2.671)</td>
<td>1.436 (0.261)***</td>
</tr>
<tr>
<td>GDP/Pop</td>
<td>-0.308 (0.247)</td>
<td>(0.261)***</td>
</tr>
<tr>
<td>Lnd100km</td>
<td>1.214 (1.508)</td>
<td>0.773 (1.464)</td>
</tr>
<tr>
<td>Area</td>
<td>1.072 (2.752)</td>
<td>0.787 (2.672)</td>
</tr>
<tr>
<td>Pop100km</td>
<td>0.773 (1.464)</td>
<td>-0.841 (0.580)</td>
</tr>
<tr>
<td>Pop_density</td>
<td>0.787 (2.672)</td>
<td>-0.841 (0.580)</td>
</tr>
<tr>
<td>Urbanpop</td>
<td>Rule_of_law</td>
<td>1.070 (0.689)</td>
</tr>
<tr>
<td>Privatizations_00_07</td>
<td>0.019 (0.006)***</td>
<td>0.019 (0.006)***</td>
</tr>
<tr>
<td>Constant</td>
<td>-3.301 (4.290)</td>
<td>-3.301 (4.290)</td>
</tr>
</tbody>
</table>

Observations: 68
R-squared: 0.71

Robust standard errors in parentheses
* significant at 10%; ** significant at 5%; *** significant at 1%
All variables except instruments are in logarithm except Privatizations_00_07.
Annex 5:

Table 7: Robustness on Exports to GDP ratio

<table>
<thead>
<tr>
<th>Variable</th>
<th>(1) 2SLS</th>
<th>(2) 2SLS</th>
<th>(3) 2SLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrastructures</td>
<td>1.622</td>
<td>1.090</td>
<td>1.408</td>
</tr>
<tr>
<td></td>
<td>(0.430)**</td>
<td>(0.341)**</td>
<td>(0.391)**</td>
</tr>
<tr>
<td>Customs_Lpi</td>
<td>-0.799</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.974)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Icrg_corrupt</td>
<td></td>
<td>-0.371</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.349)</td>
<td></td>
</tr>
<tr>
<td>Pol4_corrupt</td>
<td></td>
<td></td>
<td>-0.947</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.723)</td>
</tr>
<tr>
<td>GDP/Pop</td>
<td>-0.279</td>
<td>-0.177</td>
<td>-0.132</td>
</tr>
<tr>
<td></td>
<td>(0.164)*</td>
<td>(0.129)</td>
<td>(0.184)</td>
</tr>
<tr>
<td>Pop</td>
<td>-0.128</td>
<td>-0.178</td>
<td>-0.178</td>
</tr>
<tr>
<td></td>
<td>(0.059)**</td>
<td>(0.044)**</td>
<td>(0.045)**</td>
</tr>
<tr>
<td>Ma-otri</td>
<td>-0.782</td>
<td>-0.562</td>
<td>-0.703</td>
</tr>
<tr>
<td></td>
<td>(0.283)**</td>
<td>(0.311)*</td>
<td>(0.307)**</td>
</tr>
<tr>
<td>Volat</td>
<td>-0.112</td>
<td>-0.263</td>
<td>0.207</td>
</tr>
<tr>
<td></td>
<td>(1.464)</td>
<td>(0.577)</td>
<td>(0.144)</td>
</tr>
<tr>
<td>Constant</td>
<td>5.658</td>
<td>6.090</td>
<td>5.693</td>
</tr>
<tr>
<td></td>
<td>(1.190)**</td>
<td>(0.874)**</td>
<td>(0.891)**</td>
</tr>
<tr>
<td>Observations</td>
<td>71</td>
<td>69</td>
<td>76</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.15</td>
<td>0.25</td>
<td>0.12</td>
</tr>
<tr>
<td>First stage F-stat for Infra</td>
<td>15.85</td>
<td>22.08</td>
<td>14.82</td>
</tr>
<tr>
<td>First stage F-stat for Institutions</td>
<td>4.84</td>
<td>5.22</td>
<td>3.39</td>
</tr>
</tbody>
</table>

Robust standard errors in parentheses
* significant at 10%; ** significant at 5%; *** significant at 1%
Instuments for institutions variables in columns (1) (2) and (3) are 4 dummy variables for French, English, German and Scandinavian legal origins as in Laporta et al. (1999).
Bibliography

