A Search and Matching Model of International Trade
– Preliminary and incomplete –

Benjamin Jung†
University of Tübingen

April 10, 2006
1 Introduction

A search perspective on international trade

- Firm heterogeneity with respect to productivity goes some way in explaining export behavior (Melitz, ECM 2003), but

- ... calibration/simulation exercises predict to high a share of exporters (for given productivity-vintage-size clusters) (Bernard et al., AER 2003)

- Firms with identical productive characteristics may exhibit different ex post behavior due to search frictions

- Sunk costs in searching for a trading partner are large and a significant source of export persistence (Bernard and Jensen, 2004)

- Creation and destruction of trade relations is quite common empirically (Besedeš and Prusa, CanJoE 2006)

Production firms, trade partners

- Exporting entails additional costs, which are usually treated as fixed (see Melitz, ECM 2003)

- Exporting often requires intermediation: a panoply of possibilities ranging from trade brokerage, franchising agreements, exclusive dealership agreements, to joint venture FDI (see Feenstra and Hanson, 2004, or Schröder et al., 2005)

⇒ Producer/Partner matching problem

⇒ Off-market price determination (Nunn, 2005)

The idea

- Without some intermediation, trade is strictly impossible. Intermediation is meant to be the involvement of any partner in exporting

- However, the fundamental desirability of trade across countries creates profit opportunities for specialized intermediaries who act as market makers

- The number of active intermediaries reacts to market conditions: in a tight market, opportunities are relatively rare, and deal making is more expensive

- The number of intermediaries will play a crucial role in determining the effect of trade liberalization on trade volumes, utility, etc.
Our contribution

1. Merging the monopolistic competition model with a matching-function approach borrowed from equilibrium unemployment theory (Pissarides, 2000)

2. Analysis of a symmetric, two-country, general equilibrium at its steady state

3. Endogenizing market access costs through search costs

4. Capturing realistic features of trade empirics (see above)

Contents

1. Introduction
2. Model setup
3. Equilibrium conditions
4. A partial equilibrium perspective on search and matching
5. General equilibrium analysis
6. Discussion
7. Conclusion

2 Model Setup

Consumer problem

The representative consumer solves

\[U = \int_0^{N+M} c_z^{\frac{\sigma-1}{\sigma}} \mathrm{d}z, \sigma > 1 \] (1)

subject to the budget constraint

\[Y \geq \int_0^N p_i^D c_i^D \mathrm{d}i + \int_N^{N+M} p_j^M c_j^M \mathrm{d}j, \] (2)

- Superscripts \(D, M \) refer to domestically produced vs. foreign produced varieties
- \(Y \) income, \(p \) price of a symmetric variety, \(c \) consumption quantity
Production firms

- Labor is only factor of production
- Fixed firm-specific setup costs, constant marginal input requirements:
 Conditional labor demand per unit of time
 \[L_i = \psi_i + \alpha_i y_i \] \hspace{1cm} (3)
- All producers are symmetric (drop \(i \))
- Producers sell quantity \(c^D \) on domestic market, or, if applicable, \(c^X \) on export market
- However, exporting only possible through an intermediary (a partner) that needs to be found through a search process

Matching

Number of matches in \([t, t + dt]\)
\[Q = Q(X^S, M^S) \] \hspace{1cm} (4)

- \(X^S = (1 - x)N \ldots \) number of unmatched (non-exporting) producers
- \(M^S \ldots \) number of unmatched partners
- \(Q(\cdot) \) is hom(1) and strictly concave in both arguments
- Market tightness: \(\theta \equiv M^S / X^S \)
- \(q(\theta) \ldots \) per unit of time Poisson rate of a successful match from unmatched partner perspective, \(q'(\theta) < 0 \)
- \(q(\theta)\theta \ldots \) per unit of time Poisson rate of a successful match from unmatched producer perspective

3 Equilibrium conditions

The value of a startup firm \(V^D \)
Bellman equation
\[\rho V^D = -\psi^D + \pi^D + q(\theta) \theta (V^X - V^D) \] \hspace{1cm} (5)

- \(\rho V^D \ldots \) per unit of time flow return to a newly created firm
- \(\psi^D \ldots \) flow fixed costs of producing for the domestic market
- \(\pi^D \ldots \) operating profit from selling on domestic market
- \(q(\theta)\theta \ldots \) Poisson rate of becoming an exporter in next \(dt \)
- \(V^X - V^D \ldots \) capital gain from switching status
- Focusing on steady states, we ignore \(\dot{V} \) terms
The value of an exporting firm V^X

$$\rho V^X = -\left(\psi^D + \psi^X\right) + \pi^D + \pi^X(p) + \lambda \left(V^D - V^X\right)$$ \hspace{1cm} (6)

- $\psi^D + \psi^X$... flow fixed costs of producing for the domestic and the export market
- p ... price paid by the intermediary
- $\pi^X(p)$... operating profit from selling on export market
- λ ... per unit of time Poisson ‘death’ rate of an existing relationship
- $\lambda \left(V^D - V^X\right)$... expected capital loss from losing export market in dt

The value of a newly created importer V^S

$$\rho V^S = -\phi + q(\theta) \left(V^T - V^S\right)$$ \hspace{1cm} (7)

- ϕ ... flow costs while searching
- $q(\theta) \left(V^T - V^S\right)$ expected capital gain from finding a producer

The value of an ongoing importer V^T

$$\rho V^T = -\psi^T + \pi^T(p) + \lambda \left(V^S - V^T\right)$$ \hspace{1cm} (8)

- ψ^T ... flow fixed costs of importing
- $\pi^T(p)$... operating profits from selling imported variety
- $\lambda \left(V^S - V^T\right)$ expected capital loss from losing the supplier

Consumer behavior

- Normalizing $w = 1$ in both countries, household income is $Y = L$
- Using firms’ pricing rules, demand for imported varieties is

$$c^M = L p^{\sigma - 1} \sigma^{-\sigma} \left(\frac{\sigma - 1}{\sigma}\right)^{\sigma}$$

- Similarly, demand for domestically produced varieties is

$$c^D = L p^{\sigma - 1} \alpha^{-\sigma} \left(\frac{\sigma - 1}{\sigma}\right)^{\sigma}$$

- The aggregate price index P is

$$P^{1-\sigma} = N \alpha^{1-\sigma} \left(\frac{\sigma}{\sigma - 1}\right)^{1-\sigma} + x N p^{1-\sigma} \left(\frac{\sigma}{\sigma - 1}\right)^{1-\sigma}$$
Nash bargaining

- When an importer searching a specific variety meets a producer that supplies such a variety, the prospective partners find themselves in a bilateralmonopoly.
- They negotiate a transaction price p

$$p = \arg \max \left(V^X(p) - V^D \right)^\beta \left(V^T(p) - V^S \right)^{1-\beta} \quad (9)$$
- $\beta \in (0,1)$...the producer's bargaining power
- First order condition

$$V^X(p) = \frac{\beta}{1-\beta} \left(\frac{-V^X_p(p)}{V^T_p(p)} \right) V^T(p) \quad (10)$$

Steady state flow condition

- Share of exporting firms evolves according to

$$\dot{x} = \theta q(\theta) \left(1 - x \right) - \lambda x \quad (11)$$
- We focus on steady state equilibria where $\dot{x} = 0$, hence

$$x = \frac{\theta q(\theta)}{\theta q(\theta) + \lambda} \quad (12)$$

Full employment

$$L = \psi^D N + \psi^X x N + \alpha c^D N + \alpha c^X x N \quad (13)$$

Note on search costs: as in Pissarides (2000), perfect international capital mobility at given ρ

Focus on symmetric equilibrium

- Both countries are identical in all respects
- $c^X = c^M (1 + \tau)$...each country export production less iceberg trade costs ($\tau > 0$) is consumed in the other country
- $xN = M$...numbers of exported and imported varieties are the same
- Balanced trade $p^X \times c^X \times x \times N = p^M \times c^M \times M$ holds as an identity
4 A partial equilibrium perspective on search and matching

Assumptions

- Goods prices are given: p^D for domestically produced and p^M for imported varieties
- Quantities are given and normalized to one ($e^D = e^X = 1$): profit maximization only works via the transaction price p
- Number of producers are given: N

Operating profits

- No variable costs: costs of producing are captured by ψ^D and ψ^X respectively
- Operating profits from selling domestically $\pi^D = p^D$
- Operating profit of an exporting firm $\pi^X = p$
- Operating profit of an ongoing importer $\pi^T = \frac{p^M}{1+\tau} - p^D$

Three equilibrium conditions

1. Free entry of intermediaries (Zero profit condition line)

$$p = -(\rho + \lambda) \frac{\phi}{q(\theta)} + \psi^T - \frac{p^M}{1+\tau}$$

(14)

2. Nash bargaining (Price equation line)

$$p = (1 - \beta)\psi^X + \beta \left(\phi^T - \psi^T + \frac{p^M}{1+\tau} \right)$$

(15)

3. Steady-state condition

$$x = \frac{q(\theta)\theta}{q(\theta)\theta + \lambda}$$

(16)

three equations in three endogenous unknowns (p, θ, x)
Solution

- To solve the system of three equations, we assume the matching function to be Cobb-Douglas

\[
q(\theta) = \frac{Q(X^S, M^{S*})}{M^{S*}} = \frac{(X^S)^\gamma (M^{S*})^{1-\gamma}}{M^{S*}} = \theta^{-\gamma}
\]

and set \(\gamma = \frac{1}{2} \)

- Equilibrium share of searching producers

\[
1 - x = \frac{\lambda}{\Gamma} \left((\rho + \lambda)\phi + \sqrt{(\rho + \lambda)^2 \phi^2 + 2\beta \phi \Gamma} \right),
\]

where \(\Gamma = 2 \left[(1 + \beta) \left(\psi^T - \frac{p^M}{1 + \tau} \right) - (1 - \beta) \psi^X \right] > 0 \)

- Equilibrium market tightness

\[
\theta = \frac{\lambda^2}{(1 - x)^2}
\]

- Equilibrium price

\[
p = -\frac{\phi (\rho + \lambda)}{\lambda} (1 - x) + \psi^T - \frac{p^M}{1 + \tau}
\]

Reduction of search costs

- A reduction of the flow search costs \(\phi \) rotates the price equation line clockwise and the ZPC line outward
- The market tightness increases
- \(q(\theta) \) does not shrink as fast as \(\phi \), so the expected search costs \(\frac{\phi}{q(\theta)} \) fall
- The effect on the ZPC line is stronger, so the price rises
- In the \(m-(1 - x) \)-space the ZPC line rotates anticlockwise and \(x \) rises
- A reduction of the flow search costs induces a rise in the trade volume \(V = px\bar{N} \)
Changes in the trade costs, the willingness to pay, and the fixed costs of a trader

- A reduction of trade costs τ, an increase in the willingness to pay in the importing country p^M and a reduction of the flow fixed costs of importing ψ^T affect the endogenous variables via the same channels

- The price equation line is shifted to the north, the ZPC line to the southwest

- The market tightness decreases

- The price equation line shifts even more, so overall the price is reduced

- In the $m-(1-x)$-space the ZPC line rotates clockwise, causing x to shrink

- In this scenario, the trade volume is reduced

Limitations of the partial equilibrium approach

- The partial equilibrium results are isomorph to Pissarides (2000), but

- ... no interaction with the foreign country

- ... no interaction with the consumer

\Rightarrow solution not sustainable in general equilibrium model of international trade
5 General equilibrium analysis

Summary of equilibrium conditions

1. Free entry of producers: $G^1(p, c^X, c^D, \theta) = 0$
2. Free entry of intermediaries: $G^2(p, c^X, \theta) = 0$
3. Nash bargaining: $G^3(p, c^D, c^X) = 0$
4. Consumer behavior: $G^4(p, c^X, x, N) = 0$
5. Steady-state condition: $G^5(x, \theta) = 0$
6. Full employment: $G^6(c^X, c^D, x, N) = 0$

six equations in six endogenous unknowns $(p, c^X, c^D, \theta, x, N)$

Equilibrium free entry conditions

- Necessary conditions for existence of a steady state
 \[\sigma > (1 - \beta)^{-1}, \psi^P > \psi^T \] \hfill (21)

- Free entry of producers: number of varieties (=firms) N in each country adjusts endogenously so that $\rho V^D = 0$ and
 \[\psi^P = \pi^D + \frac{q(\theta) \theta}{\rho + \lambda + q(\theta) \theta} \pi^X, \] \hfill (22)

 where ψ^P covers the flow fixed costs for firms producing for the domestic market only or for both markets and
 \[\pi^D = \frac{\alpha}{\sigma - 1} c^D, \pi^X = (p - \alpha) c^X \] \hfill (23)

- Free entry of intermediaries: number of trading firms (importers) M adjusts endogenously so that $\rho V^S = 0$ and
 \[\frac{\phi}{q(\theta)} = \frac{\pi^T - \psi^T}{\rho + \lambda}, \] \hfill (24)

 where
 \[\pi^T = \frac{p}{\sigma - 1} c^X \] \hfill (25)
Firm profits and firm valuation

- Different to Melitz: no luck rentiers
- Net profits of exporters are positive, those of non-exporters are negative
- $V^X - V^D = 0$ if $\rho = 0$: asymptotically all firms spend the same fraction of time exporting. Only advantage of present exporters is that they are currently enjoy higher profits
- This is a testable implication specific to our model

A perspective on the transaction price p

- To simplify, assume the ratio of partial derivatives of the firm values w.r.t p to be constant and -1. This assures the bargaining parties to have conflicting interests and implies the necessary condition
 \[\sigma < \frac{p}{p - \alpha} \]
 (26)

- Solving the Nash bargaining problem
 \[p = K \left(\alpha - \frac{\beta}{1 - \beta} \frac{\psi^P}{c^X} + \frac{\pi^D}{c^X} \right) \geq 0 \]
 (27)

 \[K = \frac{(1 - \beta)(\sigma - 1)}{(1 - \beta)(\sigma - 1) - \beta} > 1, \text{ if } \sigma > \frac{1}{1 - \beta} \]
 (28)

 \[p > \alpha, \text{ if } K > 1 \text{ and } \psi^P - \pi^D \geq \frac{\beta}{1 - \beta} \psi^T \]
 (29)

- In equilibrium, p needs to cover the fixed costs of the intermediaries and help cover those of the producers
- Price is larger, the larger σ and ψ^P
- Price increases in α if $c^X > c^D / (\sigma - 1)$ (p can well fall in α due to larger domestic profits)
- Price increases in β if $\psi^P - \pi^D + \alpha c^X \geq (\sigma - 1) \psi^T$ (p is more likely to fall in β, the larger ψ^T and/or σ are)
The effect of ‘globalization’

- Globalization driven by technology: ϕ falls
- Globalization driven by institutional reform: λ falls
- Different channels, but similar welfare implications
- Globalization scenarios different from decreasing trade costs as in Monoplastic Competition Model
- Trade volume is given by $x \times N \times c^X \times p$
- Intermediaries face endogenous expected search costs of $\phi/q(\theta)$
- Fall in ϕ and λ: intermediaries’ expected search costs $\phi/q(\theta)$ shrink, value of a ‘match’ falls, this is consistent only with reduced profits, with fixed markups this means that the value of trade per intermediary pc^X falls

Calibration

- Again the matching function is assumed to be Cobb-Douglas $q(\theta) = \theta^{-\gamma}$
- Let $w = 1$ by choice of numeraire and $L = 1$
- We set an elasticity of substitution in line with Bernard et al. (AER, 2003)
 - According to the Hosius condition γ equals $\beta = 0.5$
 - Let $\alpha = 0.5, \psi^P = 1.9, \psi^T = 1.2, \rho = 0.01, \tau = 0.01$
 - Let (a) $\phi = 0.4$ and (b) $\lambda = 1$
Drivers of trade volume as a function of λ

- If λ is sufficiently large, all matches are destructed immediately. By the steady state condition x almost zero (autarky)
- We analyse now a decreasing destruction rate λ
- By the steady state condition the share of exporters x tends to 1, so the market tightness $\theta = \frac{M}{(1-x)N}$ increases, $q(\theta)$ decreases and $q(\theta)\theta$ increases. By free entry of producers π^D and/or π^X have to shrink as $\frac{q(\theta)\theta}{\rho+\lambda+q(\theta)\rho}$ rises (even with decreasing λ). π^D is driven by c^D, while π^X can adjust via p and c^X: p has a lower limit, namely α. To drive down operating profits from exporting the price p has to increase, while the export quantity c^X decreases
- As the share of exporters rises faster than the export quantity shrinks, the number of varieties produced domestically has to shrink by the full employment condition
Openness \(\left(xNpc^x/Y \right) \) as a function of \(\lambda \)

- The drivers of openness are already described. Overall, the product of exporter share and price rises faster than the product of export quantity and number of domestically produced varieties shrinks.
- The number of imported varieties \(M \) is given by \(xN \), so the number of available varieties \(N + M \) is \(N(1+x) \). \(x \) increases faster than \(N \) shrinks, so \(N + M \) increases.
Effects on intermediaries, producers and welfare

- The effects on expected search costs, sales of intermediaries and profits on producers are rather clear.

- As $q(\theta)$ decreases, the expected search costs have to rise.

- Sales of intermediaries ($p_c X \times$ constant markup) have to shrink (as explained above), so intermediaries become smaller.

- The share of gross profit margin earned on foreign market is given by $\left(1 + \frac{p_c}{\alpha^*(p-\alpha)(1+\tau)}\right)^{-1}$. With $p < 1$ the term $\frac{p_c}{p-\alpha}$ shrinks in p and the share of gross profit margin earned on foreign market rises.

- The rise in x and p offset the decrease in N, so $P^{1-\sigma} = N(\alpha^{1-\sigma} + xp^{1-\sigma})$ increases, P decreases and the real wage $1/P$ increases. This is equivalent to a rise in indirect utility.
Drivers of trade volume as a function of ϕ

- We analyse a decrease in flow fixed costs of searching
- A decrease in $\phi = \frac{q(\theta)(\pi^T - \psi^T)}{\rho + \lambda}$ causes $q(\theta)$ and/or π^T to decrease
- If the matching probability decreases, the market tightness increases, and the share of exporters x rises
- A decrease in π^T is as above brought about by an increase in p and a decrease in c^X
- It is noticeable, that for sufficient small ϕ the number of domestically produced varieties rises again. This might be driven by free entry of producers, especially by the properties of $\frac{q(\theta)\theta}{\rho + \lambda + q(\theta)p}$. For a certain θ this ratio rises faster than π^X shrinks. It becomes easier for producers to cover their flow fix costs of producing, so more producers enter
Openness \((V = xNpc^{X/Y})\) as a function of \(\phi\)

- By full employment, \(c^D\) has to adjust as well
- The effect on the openness and the number of available varieties works as above
Effects on intermediaries, producers and welfare

- ϕ shrinks faster than $q(\theta)$, so the expected search costs fall in contrast to the scenario, where globalization is driven by institutional reform.

- The same implications as in the case of decreasing λ apply for the size of intermediaries, the share of gross profit margins earned on foreign market and welfare.

6 Discussion

Key results

- For given productivities some producers export, some don’t (in line with evidence).

- Profit seeking intermediaries help overcome frictions, entry high if $\rho + \lambda$ high and/or market tightness high.

- Producer/intermediary matches are bilateral monopolies where the transaction price is set through bargaining and not through competitive pricing mechanism.

- Partial equilibrium perspective helps to understand the search and matching mechanism, while general equilibrium approach brings interaction with foreign country and consumers into the picture.
• Liberalization scenarios have potentially non-monotonic effects on number of varieties produced domestically

Extensions

• Within this project
 – Off-steady-state dynamics
 – Asymmetric equilibria
 – Analysis of variable trade costs
 – General Nash bargaining solution

• Additional work streams
 – Two-sided search
 – Endogenous match destruction
 – Different productivities across firms
 – Vertical integration of producers and intermediaries (foreign affiliates)
 – Incorporation of network effects (matching function with increasing returns to scale)

7 Conclusion

• The model shows a way to merge a Pissarides-type matching model with a standard Monopolistic Competition Model of international trade

• Contributes towards unpacking trade costs (Venables) beyond Rauch and co-authors

• Search costs are to be seen as relationship specific sunk costs and are qualitatively different to Melitz-type beachhead export costs
References

