Asymmetric Trade Liberalizations and Current Account Dynamics

Alessandro Barattieri

January 15, 2015

Abstract

The current account deficits of Spain, Portugal and Greece are the result of large deficits in goods trade and modest surpluses in service trade. Germany, instead, displays a large surplus in goods trade, but a deficit in service trade. Starting from this motivating evidence, I propose in this paper a simple model that rationalizes how the asymmetric timing of trade liberalizations can affect current account dynamics. I solve analytically a log-linear version of the model and derive an expression where the current account depends on present and future relative changes in the exogenous trade costs. Second, I show that trade costs dynamics and productivity dynamics have been highly asymmetric in the manufacturing and services sectors in Germany in the period 2000-2007 and I propose a quantitative analysis based on a standard 2-country international real business cycle model augmented with trade costs. When fed with the actual asymmetric trends found in the German data, the model can generate a trade surplus of about 6% of GDP. The model delivers large trade surpluses also when considering only asymmetric trade liberalizations, but fails to generate surpluses consistent with the data when considering only asymmetric productivity dynamics. Finally, I provide empirical evidence broadly supporting the key predictions of the simple model using both data from 24 OECD countries plus the BRICS and data from a sample of developing countries specialized in the export of agricultural goods.

JEL classification: F1, F32, F40
Keywords: Current Account Dynamics, Relative Trade Liberalization Measures

*I would like to thank James Anderson, Matteo Cacciatore, Fabio Ghironi, Julien Martin, Susanto Basu and seminar participants to ESG UQAM, and Mid West Macro Fall 2014 for useful comments and suggestions. A special thank to the D.C. International Trade Workshop participants for their detailed comments and suggestions. All errors are mine.

†University of Quebec at Montreal (UQAM) Economics Department. Mail: Case Postale 8888, sucursale Centre-ville Montreal (Quebec) H3C 3P8. Tel: +1-514-987-3000 (0850#). Fax: 514-987-8494. E-mail: barattieri.alessandro@uqam.ca
1 Introduction

The topic of external imbalances has always been an important source of concern for economists and policy makers. In the context of the European Union, for instance, the European Commission has recently introduced a mechanism to monitor the formation of excessive macroeconomic imbalances that can trigger an “excessive imbalance procedure”. The current account is one of the key indicators monitored. Figure 1 reports the evolution of the current account over GDP for four European countries, where we can see how the increasing current account surplus of Germany is accompanied by increasing current account deficits in the southern European countries (Spain, Greece, Portugal).

The motivation for this paper is the uncovering of some new facts. Figures 2 to 5 propose a simple decomposition of the trade balance into the goods balance and service balance components for the same four European countries included in Figure 1. While for Germany (Figure 2) the large trade surplus emerges from a trade surplus in goods, accompanied by a trade deficit in services, the opposite is true for the other countries. Spain, Portugal, and Greece, in fact, exhibit increasing trade deficits in goods, but surpluses in services (Figures 3, 4, and 5). Moreover, also looking at the bilateral trade relationships between Germany and Spain, Portugal, and Greece we observe the same pattern: these southern European countries display trade surpluses in services and trade deficits in goods (Figures 6, 7 and 8).

Starting from this motivating evidence, the contribution of this paper is to propose a theory of how asymmetric trade liberalization processes can affect current account dynamics. I start by outlining a simple theoretical model where I show how asymmetric trade liberalizations can affect current account dynamics. I then propose a quantitative analysis of the German surplus using a standard 2 country international real business cycle model with trade costs, and I show how the asymmetry in the liberalization of manufacturing versus service trade documented in Barattieri (2014), can explain a significant fraction of it. Finally, I propose some empirical evidence that broadly support the main predictions of the theory both using data from 24 OECD countries and the BRICS and using a sample of developing

\footnote{A very similar picture could be drawn also for the UK.}
countries specialized in the export of agricultural goods.

I proceed in three steps. First, I show how asymmetric trade liberalizations can affect current account dynamics using a simple model: an environment with two periods, two countries, no production, complete specialization, and exogenous trade costs. I propose a log-linear version of the model around a symmetric equilibrium and I show how the evolution of Home’s current account depends purely on consumption smoothing. I solve explicitly for the current account only as a function of the exogenous endowments and trade costs, and I show how the relevant shock for current account dynamics is the change in the trade cost the home good relative to the change of the trade cost of the foreign good. Any symmetric trade liberalization in which the trade costs for the home and the foreign good move in the same way would not have any impact on the current account. On the other hand, asymmetric trade liberalization processes – where the timing of trade liberalization is different for the home and foreign goods – affect current account dynamics.²

Second, I propose a quantitative investigation of the German trade surplus. I first show that in Germany, in the period 2000-2007, the dynamics of trade costs and productivity in the service and manufacturing sectors have been highly asymmetric. I use the constructed home bias index (CHB), first proposed by Anderson and Yotov (2010), as a way of describing the timing of liberalization in manufacturing trade and service trade. The CHB, derived by the structural gravity model, is a pure number that indicates how much more a country trade with itself in a given sector relative to what it would do if the world were completely frictionless. I show that while this indicator is declining in the manufacturing sector in Germany over the period 2000-2007, it is essentially flat in services. Moreover, using data from EU-KLEMS, I show that in Germany in the period 2000-2007 productivity growth in the manufacturing sector was much higher than in services. I then use a standard 2-country 2-sector international real business cycle model, augmented with trade costs, to assess what fraction of the the German trade surplus can be reproduced by the asymmetric

²Present and future relative endowments in the two countries are also determinants of the current account. A relative increase in home output in period one leads home toward current account surpluses, while a relative increase in output at time two leads the home country towards current account deficits.
trade liberalization and the asymmetric productivity growth processes. I solve the model under perfect foresight. When I feed the model with the asymmetric trends of the trade costs and the productivity found for Germany, the model produces a trade surplus of around 6% of GDP at its peak, roughly the same order of what observed in the data (7.1%). Interestingly, if the model is fed only with asymmetric trade costs dynamics—and no changes in productivity—it still delivers a sizeable trade surplus. To the contrary, when the model is fed only with asymmetric productivity dynamics—and no changed in trade costs— it is unable to deliver a path for the trade balance consistent with what observed in the German data.

Third, I propose an empirical analysis that broadly support the main predictions of the simple model. I use two different dataset. First, I use a sample of 24 OECD countries plus the BRICS and focus on the asymmetric trade liberalization in goods and service trade. I use the CHB to proxy for the trade costs in manufacturing and services. I divide the sample of countries into those relatively specialized in the export of manufacturing and those relatively specialized in the export of services. I build relative trade liberalization measures, defined as the differences in the change of the average CHB faced in the export sector and the change of the CHB in the import sector. I show how, on average, Spain, Portugal and Greece were characterized by high relative trade liberalizations during the period 1995-2009. This means that the fall in the barriers to trade in the sector they tend to import (manufacturing) were on average larger than the fall of the trade barriers in the sector where they tend to export (services). Germany, on the contrary, exhibits, on average a low relative trade liberalization, meaning that the barriers to trade in the German export sector decreased by more than the barriers to trade in its import sector. I then explore the role of relative trade liberalizations as determinants of current account dynamics. Following the specification of the key equation of the model, I regress the change in the ratio of current account as a share of GDP on both the contemporaneous measure of relative trade liberalization and on some of its leads. Consistently with the theory, I find a negative a statistically significant coefficient on the contemporaneous relative trade liberalization measure (a country tends to experience a deficit when the restrictions to trade in its import sector fall by more than
those in its export sector) while the coefficients on the leads of the same measure are positive and statistically significant (a country tends to experience a deficit if in the future it expects the impediments to trade in its export sector to fall by more than the impediments to trade in its import sector). These correlations are robust to the inclusion of several controls, including growth, openness, gdp and gdp per capita, as well as year and country fixed effects. Moreover, I formally test the equality of the coefficients on the contemporaneous and forward relative trade liberalization measures, as predicted by the model, and I am unable to reject it at any reasonable confidence level. I also repeat the same exercise, but focusing on a different set of developing countries, characterized by being highly relatively specialized in the exports of agricultural goods, and relatively specialized in the imports of manufacturing goods. I build relative trade liberalization measures using tariffs data for manufacturing and agricultural goods, and verify how contemporaneous high relative trade liberalizations are correlated with deteriorations of the current account, while high future relative trade liberalizations are correlated with current account improvements. Also in this case, I cannot reject the hypothesis that the coefficients on present and future relative trade liberalizations are the same. Thus, I conclude that asymmetric trade liberalizations are indeed a driver of current account dynamics, which was previously at least partly overlooked.

This paper is linked to several strands of the literature. First, it is broadly linked to the literature on global imbalances. While the literature on global imbalances is extremely vast\(^3\), a subset of papers have tried to specifically link trade reforms and industrial structures to current account dynamics. Ju and Wei (2012) presents a model where the interaction of Heschker-Ohlin forces and trade liberalization can affect current account dynamics. While the theoretical channels proposed by Ju and Wei (2012) are operating on the production side, the only force operating in the model proposed in this paper is consumption smoothing. Jin (2012) links industrial structure to capital flows (and hence to current account dynamics) in a model where the specialization in capital intensive sectors rises the demand for capital, and thus explain the emergence of current account deficits. However, Jin (2012) abstracts

\(^{3}\text{See for instance Blanchard and Milesi-Ferretti (2009), Caballero, Farhi and Gourinchas (2008), Engels and Rogers (2006), Hausman and Sturzenegger (2006), Mendoza, Quadrini and Rios-Rull (2009).}
from trade cost, considering a world with no trade frictions.

Second, the paper is linked to the literature on structural gravity and the construction of trade restrictiveness measures (Anderson and Van Wincoop, 2003, Anderson and Yotov, 2010).

Finally, this paper is linked to empirical literature on the current account dynamics (see for instance Gruber and Kamin, 2003), with particular emphasis on the studies related to the external imbalances within Europe (Blanchard and Giavazzi, 2002; Lane, 2013; Kollmann et al, 2015). None of these studies has proposed asymmetries in trade liberalizations as potential drivers of current account dynamics.

Most closely to this paper, in Barattieri (2014) I examine the extent to which the asymmetry in the liberalization of service trade and manufacturing trade of the last decades can explain the current account dynamics of the U.S. There are similarities but also important differences between Barattieri (2014) and this paper. First, unlike in Barattieri (2014) I now take into account also the dynamics of productivity when calibrating a DGE model to match the path of the trade surplus of a specific country (Germany in this case), and show that asymmetric trade liberalizations are indeed more important in order to explain the data than asymmetric productivity dynamics. Second, differently from Barattieri (2014), in this paper the CHB index is used in order to build relative liberalization measures and then (and more importantly) to test the key prediction of the model. Third, I propose here a new empirical analysis based on a sample of developing countries specialized in the export of agricultural goods.

The paper is structured as follows. The next Section introduces the simple theoretical model. Section 3 contains the quantitative analysis of the German trade surplus. Section 4 contains the two empirical analyses while Section 5 concludes and includes some policy implications.

4See Burka, Devereux and Engel (2014) for an analysis of the real exchange rates and productivity dynamics in the Eurozone.
2 A Simple Two-Period Model

In this Section I lay out a simple model aimed at showing how asymmetric trade liberalizations can affect the dynamics of the current account. The world consists of two countries: Home and Foreign (with foreign variables denoted by *). Each country is populated by a representative household that lives for two periods. Two goods are consumed: a home good (h) and a foreign good (f). The endowment of the home good is Y^h_t with $t = \{1, 2\}$. The endowment of the foreign good is Y^f_t with $t = \{1, 2\}$. The price of the home good at Home is p^h_t. The price of the home good in Foreign is $p^{hs}_t = \tau^h_t p^h_t$, where $\tau^h_t > 1$ is an iceberg trade cost. The foreign good f is imported in Home from Foreign. The Home price of the foreign good is $p^f_t = \tau^f_t p^{fs}_t$, where p^{fs}_t is the price of the foreign good in Foreign and $\tau^f_t > 1$ is an iceberg trade cost.5

In both countries, households maximize lifetime utility, given by:

$$\frac{X^{1-\sigma}_1}{1-\sigma} + \beta \frac{X^{1-\sigma}_2}{1-\sigma}$$

where $X = C$ or C^* depending on the country. The asset menu features only an international bond denominated in units of a common world currency. The first-period and second-period budget constraints are, respectively:

$$B_1 = p^h_1 Y^h_1 - P_1 C_1, \quad B^*_1 = p^{hs}_1 Y^{hs}_1 - P^*_1 C^*_1,$$

$$P_2 C_2 = p^h_2 Y^h_2 + (1 + r_1) B_1, \quad P^*_2 C^*_2 = p^{hs}_2 Y^{hs}_2 + (1 + r_1) B^*_1,$$

where B_1 and B^*_1 are the net bond positions of Home and Foreign and r_1 is the riskless net rate of return in units of the numeraire.

The consumption basket aggregates home and foreign goods. I assume a C.E.S. aggregate with elasticity of substitution different from 1. The reason is that, as shown by Cole and Obstfeld (1991) and Corsetti and Pesenti (2001), in the presence of unitary elasticity of

\[\text{I set a world price index } P^W = \frac{P^1}{P^{*1/2}} = 1 \text{ to be the numeraire.}\]
substitution between home and foreign goods, there are no intertemporal transfers of wealth across countries (i.e., no current account movements). Therefore, the consumption basket in the Home country is defined to be:

\[C_t = \left[\left(\frac{C^h_t}{P_t} \right)^{\theta-1} + \left(\frac{C^f_t}{P_t} \right)^{\theta-1} \right]^{\frac{\theta}{\theta-1}}, \]

where \(\theta \) is the elasticity of substitution between goods and services, assumed to be larger than 1. \(C^h_t \) represents the consumption of home goods in Home at time \(t \), while \(C^f_t \) is the consumption of foreign good in Home at time \(t \). \(C^*_t, C^*_t^h, \) and \(C^*_t^f \) are defined in analogous fashion. The price indexes in Home and Foreign are respectively:

\[P_t = \left[\left(\frac{p^h_t}{P_t} \right)^{1-\theta} + \left(\frac{\tau^f_h p^h_t}{P_t} \right)^{1-\theta} \right]^{\frac{1}{1-\theta}}, \quad P^*_t = \left[\left(\frac{\tau^h_t p^h_t}{P^*_t} \right)^{1-\theta} + \left(\frac{p^f_t}{P^*_t} \right)^{1-\theta} \right]^{\frac{1}{1-\theta}}. \quad (3) \]

The inter-temporal optimization problem yields standard Euler equations for both Home and Foreign:

\[C_1 = \beta^{-\sigma} \left(1 + r_1 \right) \left(\frac{P_1}{P_2} \right)^{-\sigma} C_2, \quad C^*_1 = \beta^{-\sigma} \left(1 + r_1 \right) \left(\frac{P^*_1}{P^*_2} \right)^{-\sigma} C^*_2. \quad (4) \]

The intra-temporal optimization decision gives the following demand equations for \(t = \{1, 2\} \):

\[C^s_t = \left(\frac{p^h_t}{P_t} \right)^{-\theta} C_t, \quad C^h_t^* = \left(\frac{\tau^h_t p^h_t}{P^*_t} \right)^{-\theta} C^*_t, \quad (5) \]

\[C^f_t = \left(\frac{\tau^f_t p^f_t}{P_t} \right)^{-\theta} C_t, \quad C^f_t^* = \left(\frac{p^f_t}{P^*_t} \right)^{-\theta} C^*_t. \quad (6) \]

To close the model, we must impose goods and bond market clearing conditions. The nature of the iceberg trade costs implies the following goods market clearing conditions:

\[Y^h_t = C^h_t + \tau^h_t C^h_t^*, \quad (7) \]
\[Y^f_t^* = \tau^f_t C^f_t + C^f_t^*. \quad (8) \]
Finally, bond market clearing requires:

\[B_1 + B_1^* = 0. \] \hfill (9)

We thus have 21 endogenous variables \((C_t, C_t^*, P_t, P_t^*, C_t^h, C_t^{h*}, C_t^f, C_t^{f*}, p_t^h, B_1, B_1^*, r_1)\) with \(t = \{1, 2\}\). The 21 equations (1)-(9), together with the evolution of the exogenous variables \(Y_t^j\) and \(\tau_t^j\) (with \(t = \{1, 2\}\) and \(j = h, f\)) completely characterize the equilibrium of this economy.

Unfortunately, one cannot obtain closed-form solutions without unitary elasticity of substitution between home and foreign goods. To make the results transparent, instead of relying on numerical examples, I will present analytical results based on the log-linearized version of the model around a symmetric equilibrium.

2.1 A Symmetric Equilibrium

The analysis below is based on a log-linearization of the model around a symmetric equilibrium where \(\bar{p}^h = \bar{p}^{f*} = 1, \bar{B}_1 = \bar{B}_1^* = 0, \bar{Y}^h = \bar{Y}^{f*} = \bar{Y},\) and \(\bar{\tau}^h = \bar{\tau}^{f} = \tau.\)

In this symmetric equilibrium, price indexes are equal:

\[P = P^* = \left(1 + \tau^{1-\theta}\right)^{1/\theta}. \] \hfill (10)

Moreover, we have:

\[
\begin{align*}
\bar{C} &= \bar{C}^* = \frac{\bar{Y}}{\bar{P}^*}, \\
\bar{C}^h &= \bar{C}^{h*} = \bar{P}^\theta \bar{C}, \\
\bar{C}^f &= \bar{C}^{f*} = \tau^{-\theta} \bar{P}^\theta \bar{C}.
\end{align*}
\] \hfill (11)-(13)

Finally the Home share of consumption of the home good is equal to the Foreign share of consumption of the foreign good:
\[
\frac{\tilde{C}_h}{\tilde{C}_h + \tau \tilde{C}_h} = \frac{\tilde{C}_f^*}{\tau \tilde{C}_f^* + \tilde{C}_f} = s_h = s_f^* = \frac{1}{1 + \tau^{1-\theta}}.
\] (14)

Notice that the foreign share of consumption of the home good includes also the amounts lost to trade costs. On the other hand, the Home share of consumption of the foreign good is:

\[
\frac{\tau \tilde{C}_f}{\tau \tilde{C}_f^* + \tilde{C}_f^*} = \frac{\tau \tilde{C}_h^*}{\tilde{C}_h^*} = s_f = s_h^* = \frac{\tau^{1-\theta}}{1 + \tau^{1-\theta}}
\] (15)

Consistent with intuition, it is straightforward to check that \(\frac{\partial s_h}{\partial \tau} > 0\) and \(\frac{\partial s_f}{\partial \tau} < 0\). In other words, the introduction of the trade costs creates home bias in this setting even in absence of home bias in preferences.\(^6\) Finally, symmetry implies that \(s_h = 1 - s_f\). This property is extremely useful in the process of log-linearization.

2.2 The Log-Linear Model

I denote percentage deviations from the symmetric equilibrium with a hat. So \(\hat{x} = \log \left(\frac{x}{\bar{x}} \right)\), where \(\bar{x}\) is the value of \(x\) at the symmetric equilibrium. The details of the log-linearization and the solution of the model are described in the appendix. The Euler equations take the log-linear form:

\[
\hat{C}_1 = -\sigma(1 - \beta)\hat{r}_1 - \sigma \hat{P}_1 + \sigma \hat{P}_2 + \hat{C}_2,
\] (16)

\[
\hat{C}_1^* = -\sigma(1 - \beta)\hat{r}_1 - \sigma \hat{P}_1^* + \sigma \hat{P}_2^* + \hat{C}_2^*.
\] (17)

The log-linear versions of the period-1 budget constraint in Home and Foreign are:

\[
\hat{B}_1 = \hat{p}^h_1 + \hat{Y}^h_1 - \hat{P}_1 - \hat{C}_1,
\] (18)

\[
\hat{B}_1^* = \hat{p}^{f*}_1 + \hat{Y}^{f*}_1 - \hat{P}_1^* - \hat{C}_1^*.
\] (19)

\(^6\)A point already made by Obstfeld and Rogoff (2001).
where importantly the current account the percentage deviation from the equilibrium output \bar{Y}. The budget constraints for period 2 are:

\[
\hat{C}_2 = \hat{p}_2^h + \hat{Y}_2^h - \hat{P}_2 + \frac{1}{\beta} \hat{B}_1, \tag{20}
\]

\[
\hat{C}_2^* = \hat{p}_2^{*} + \hat{Y}_2^{*} - \hat{P}_2^* + \frac{1}{\beta} \hat{B}_1^*. \tag{21}
\]

Taking the difference between (18) and (19) and imposing the bond market clearing condition, we get the following expression for the current account of the Home country in period 1 (equivalent to the country’s net foreign asset at the end of the period):

\[
2 \hat{B}_1 = \left(\hat{p}_1^h - \hat{p}_1^{*} \right) - \left(\hat{P}_1 - \hat{P}_1^* \right) - \left(\hat{C}_1 - \hat{C}_1^* \right) + \left(\hat{Y}_1^h - \hat{Y}_1^{*} \right). \tag{22}
\]

Equation (22) expresses the current account of the Home country as a function of the terms of trade ($\hat{p}_1^h - \hat{p}_1^{*}$), the real exchange rate, the consumption differential and the endowments differential, which we can think of reflecting difference in the dynamics of productivity. Everything else equal, an improvement of the terms of trade would lead to a current account surplus and a real appreciation to a current account deficit. An increased consumption differential between the Home and the Foreign country would lead to a current account deficit at Home, and an increase in productivity at Home would lead to a surplus. Using the difference between (16) and (17) and the difference between (20) and (21), we can rewrite (22) as

\[
\frac{2(1 + \beta)}{\beta} \hat{B}_1 = \left(\hat{p}_1^h - \hat{p}_1^{*} \right) - \left(\hat{p}_2^h - \hat{p}_2^{*} \right) + \left(\hat{Y}_1^h - \hat{Y}_1^{*} \right) - \left(\hat{Y}_2^h - \hat{Y}_2^{*} \right) + (\sigma - 1) \left(\hat{P}_1 - \hat{P}_2 \right) - (\sigma - 1) \left(\hat{P}_1^{*} - \hat{P}_2^{*} \right). \tag{23}
\]

Equation (23) allows us to interpret the evolution of Home’s current account as depending on six factors. The first four represent a wealth effect. All else equal, consumption smoothing tends to push the Home current account toward surplus (deficit) in case of an increase of the

7This is necessary because net foreign asset are zero in the symmetric equilibrium
home endowment (or its price) relative to the foreign endowment in period 1 (period 2). The next two terms represent a substitution effect. All else equal, if the inter-temporal elasticity of substitution is larger than 1, an increase of the home price index in period 2 relative to period 1 tends to push Home’s current account toward deficit, as would a decrease in the foreign price index in period 2 relative to period 1.

Obviously, one must solve fully the model to have the impact of the different exogenous variables on the current account. While the appendix explains the procedure in detail, I will give only a quick sketch here. For both periods, I substitute the budget constraints into the demand functions for the home good, and then I use the goods market clearing conditions to solve for \(p^h_t - p^f_t^f \) as function of the trade costs, the endowments and \(B_1 \) (imposing the bonds market clearing condition eliminates \(B^*_1 \) from the system). I then express all the six elements of equation (23) as functions of the trade costs, the endowments and \(B_1 \). Finally, I substitute these functions back into equation (23). This allows me to express Home’s current account only as function of the exogenous endowments and trade costs:

\[
\hat{B}_1 = -\eta \left(\hat{\tau}^h_1 - \hat{\tau}^f_1 \right) + \eta \left(\hat{\tau}^h_2 - \hat{\tau}^f_2 \right) + \nu \left(\hat{Y}^h_1 - \hat{Y}^f_1 \right) - \nu \left(\hat{Y}^h_2 - \hat{Y}^f_2 \right)
\]

(24)

where \(\eta \) is a function of the structural parameters of the model \((\beta, \theta, \sigma, \tau) \). \(\eta \) is a positive number as long as \(\theta > 1 \) and the elasticity of intertemporal substitution is sufficiently large. \(\nu \) is also a parameter depending on \((\beta, \theta, \sigma, \tau) \).\(^8\) It is positive for a large range of plausible values of the parameters.

Equation (24) is the key equation. It is important to notice that the relevant shock is the change in the trade cost the home good relative to the change of the transport cost of the foreign good. Any symmetric trade liberalization in which the trade costs for the home and the foreign good move in the same way would not have any impact on the current account. On the other hand, asymmetric trade liberalization processes for which \(\left(\hat{\tau}^h_1 - \hat{\tau}^f_1 \right) > 0 \) and/or \(\left(\hat{\tau}^h_2 - \hat{\tau}^f_2 \right) < 0 \) push the current account of the Home country into deficit.

More generally, equation (24) challenges the view that trade policies cannot influence the

\(^8\)See the appendix for details.
trade balance because they cannot affect savings and investment decisions.\footnote{See for instance Lamy (2010).} While this is certainly true in static settings, things can be different in dynamic settings where the timing of the trade policy potentially matters for saving and investment (which are inter-temporal decisions).\footnote{Obviously here the point is made only for savings.}

Moreover, also the endowment dynamics affects the current account, and in the usual way. Everything else equal, an increase in the endowment of the Home country relative to the foreign one in period 1 (period 2) pushes the Home country current account toward surplus (deficit). This points also to the potential importance of productivity dynamics in determining the current account.

\section{A Quantitative Investigation of the German Surplus}

While equation (24) provides a clear qualitative insight, a first order question is whether this insight is also quantitatively relevant. The aim of this Section is first documenting that in Germany both trade costs and productivity dynamics in the manufacturing and service sectors have been highly asymmetric in the period 2000-2007.\footnote{The choice of the period is partly motivated by Figure 1, where the German surplus starts growing in 2000 and peaks in 2007, partly motivated by some data limitations: productivity figures are available just until 2007 and service trade costs data are more reliable after 1999.} Second, I outline a standard 2-country international real business cycle model augmented with trade costs. Finally, I explore the ability of the model, fed with the asymmetric trends found in the data, to reproduce the dynamics of the German trade surplus.

\subsection{Asymmetric Trade Costs and Productivity Dynamics}

\textbf{Trade Costs Dynamics.} I follow here Barattieri (2014), where I propose the use of the constructed home bias index (CHB)\footnote{First proposed by Anderson and Yotov (2010).} as a convenient way to capture the dynamics of trade costs in services and manufacturing. The CHB index is a pure number and it express how much more a country is trading with itself in a given sector, relative to what it would do if
the world were frictionless. Obviously, this definition requires to define a benchmark of what
would be trade in the case of a frictionless world. The structural gravity model contains
such a prediction.

Following Anderson and Van Wincoop (2003), let X^{k}_{ij} be the total shipment from the
origin country i to the destination country j in sector k, Y^{k}_{i} the total output of sector k
in the origin country i and E^{k}_{j} the total expenditure in sector k in the destination country
j (defined as output minus total exports plus total imports of country j in sector k). The
structural gravity model can be expressed as follows:

$$X^{k}_{ij} = \frac{Y^{k}_{i} E^{k}_{j}}{Y^{k}} \left(\frac{t^{k}_{ij} P^{k}_{j} \Pi^{k}_{i}}{t^{k}_{ij} P^{k}_{j} \Pi^{k}_{i}} \right)^{1-\theta_{k}}$$

(25)

where Y^{k} represents the world output of sector k and t^{k}_{ij} represents the bilateral trade
cost of shipping a unit of sector k good from country i to country j. P^{k}_{j} and Π^{k}_{i} are the
inward and outward multilateral resistance terms, which are in turn weighted averages of
the bilateral trade costs t^{k}_{ij}.\(^\text{13}\)

The equivalent expression for the internal trade would be:

$$X^{k}_{ii} = \frac{Y^{k}_{i} E^{k}_{i}}{Y^{k}} \left(\frac{t^{k}_{ii} P^{k}_{i} \Pi^{k}_{i}}{t^{k}_{ii} P^{k}_{i} \Pi^{k}_{i}} \right)^{1-\theta_{k}}$$

(26)

where X^{k}_{ii} is defined as output minus total exports. Equations (25) and (26) can be used
to get a prediction of the amount of trade that would prevail in the absence of trade frictions.
If $t^{k}_{ij} = 1$ for every country pair ij, in fact, then $\Pi^{k}_{i} = P^{k}_{j} = 1$, and $X^{k}_{ij} = \frac{Y^{k}_{i} E^{k}_{j}}{Y^{k}}$. In the case
of internal trade, we get $X^{k}_{ii} = \frac{Y^{k}_{i} E^{k}_{i}}{Y^{k}}$.

Using (26), it is possible then to express the ratio of realized internal trade to the trade

\(^{\text{13}}\)Defined as follows:

$$\left(\Pi^{k}_{i} \right)^{1-\theta_{k}} = \sum_{j} \left(\frac{t^{k}_{ij} P^{k}_{j}}{P^{k}_{j} \Pi^{k}_{i}} \right)^{1-\theta_{k}} \frac{E^{k}_{j}}{Y^{k}},$$

$$\left(P^{k}_{j} \right)^{1-\theta_{k}} = \sum_{i} \left(\frac{t^{k}_{ij} \Pi^{k}_{i}}{t^{k}_{ij} \Pi^{k}_{i}} \right)^{1-\theta_{k}} \frac{Y^{k}_{i}}{Y^{k}}.$$
that would prevail in absence of friction as functions of observable variables:

\[
CHB_{ik} = \frac{Y_i^k E_i^k \left(\frac{\theta_k}{P_k} \right)^{1-\theta_k}}{Y_i^k E_i^k} = \left(\frac{t_{ik}^k}{P_i \Pi_i} \right)^{1-\theta_k} = \frac{X_i^k Y_i^k}{Y_i^k E_i^k}.
\] (27)

In this paper I use (27) to calculate the CHB index, differently from Barattieri (2014).14 The index has several advantages and some disadvantages. First, it is time varying. Second, the index allows the separation of the effects of changes in productivity (captured by the production data) from those determined by other frictions (such as transport costs and legal barriers). Third, the index is a number and thus invariant to the elasticity of substitution \(\theta_k\).15 On the other hand, the index relies on the gravity model to determine the benchmark trade in case of no friction.

Figure 9 reports the evolution of the CHB in manufacturing and services for Germany for the period 2000-2007, normalized to 1 in 2000. As the Figure clearly shows, there is a clear trend of the CHB in the manufacturing sector, while the CHB in the services sector first decline and then increases again, with no clear trend.

Productivity Dynamics. I use EU-KLEMS data to describe the dynamics of the total factor productivity in the manufacturing and service sectors in Germany over the period 2000-2007. Figure 10 reports the results for TFP evolution in these sector, normalizing them to 1 in 2000. The Figure clearly shows an asymmetric dynamics. Productivity grew in the manufacturing sector of abut 18% in the period considered while productivity in the service sector grew by only about 3%.16

14This method of calculating the CHB includes the measurement error in the data, so it does not have the virtue of the fitted gravity regression method. It is similar in spirit to the tetrads method of Head, Mayer and Ries (2010). The two way of measuring the CHB, however, gives similar results. The correlation between the CHB in Manufacturing computed under the alternative methodologies (which in both cases was constructed for the period 1994-2009) is 0.90.

15I’m not aware of reliable estimates of \(\theta_k\) the for the service sector.

16The dynamics of productivity in Services is an average of the dynamics in construction, retail, hotels, transport and communication, finance, insurance and real estate, personal services, education, health services. Restricting the attention only to transport, finance and communication services gives a slightly higher but similar result.
3.2 A 2-Country International Real Business Cycle Model

I develop in this Section a standard 2-sector 2-country model in the spirit of Backus, Kehoe and Kydland (1994). I assume away uncertainty, while adding exogenous trade costs.

The environment. There are two countries, 1 and 2. Under perfect foresight, in each country i, a representative consumer maximizes her lifetime utility function:

$$\max \sum_{t=0}^{\infty} \beta^t U(c_{it}, 1 - n_{it}),$$

where $U(c, 1 - n) = \left[c^{\mu(1-n)^{1-\mu}} \right]^\gamma$. c_{it} and n_{it} are consumption and hours worked in country i. There is complete specialization in one intermediate good. Country 1 produces good a, while country 2 produces good b. The goods are produced with capital, k, and labor, n, according to the following technology:

$$y_{1t} = A_{1t} k_{1t}^{\alpha} n_{1t}^{1-\alpha} \quad y_{2t} = A_{2t} k_{2t}^{\alpha} n_{2t}^{1-\alpha} (28)$$

where A_{it} is the total factor productivity of country i. Importantly, I’m here assuming that productivity is non-stochastic. Both consumption and investments are composite of foreign and domestic goods:

$$c_{1t} + i_{1t} = h_{1t} \quad c_{2t} + i_{2t} = h_{2t} (29)$$

where

$$h_{1t} = \left[\omega_1(a_{1t})^{\theta-1} + \omega_2(b_{1t})^{\theta-1} \right]^\theta \quad h_{2t} = \left[\omega_1(b_{2t})^{\theta-1} + \omega_2(a_{2t})^{\theta-1} \right]^\theta (30)$$

Where a_{1t} is the use of good a in the production of the composite consumption and investment good in country 1, while b_{2t} is the usage of good b in the production of the composite consumption and investment good in country 2. θ represents the intra-temporal elasticity of substitution. The law of motion for physical capital are standard:

$$k_{1t+1} = (1 - \delta)k_{1t} + i_{1t} \quad k_{2t+1} = (1 - \delta)k_{2t} + i_{2t} (31)$$
There are common iceberg-type trade costs for the two goods: τ_{1t} and τ_{2t}. τ_{1t} units of goods a have to be shipped from country 1 to country 2 in order to have one unit of usable input in country 2. Hence, the resource constraints can be expressed as:

$$y_{1t} = a_{1t} + \tau_{1t}a_{2t} \quad y_{2t} = b_{2t} + \tau_{2t}b_{1t} \quad (32)$$

The Planner’s problem. A world planner maximizes a weighted sum of the utility of both countries:\footnote{I will assume equal weights.}

$$Max \sum_{t=0}^{\infty} \beta^t \{ \Omega_1 U(c_{1t}, 1 - n_{1t}) + \Omega_2 U(c_{2t}, 1 - n_{2t}) \} ,$$

Substituting equations (18) into (14) and equations (16) and (17) into (15), it is possible to express the constraints faced by the planner in the following way:

$$\left[\omega_1(a_{1t})^{\frac{q-1}{\alpha}} + \omega_2(b_{1t})^{\frac{q-1}{\alpha}} \right]^{\frac{\alpha}{\theta-1}} = c_{1t} + k_{1t+1} - (1 - \delta)k_{1t} \quad (33)$$

$$A_{1t}k_{1t}^{\alpha}n_{1t}^{1-\alpha} = a_{1t} + \tau_{1t}a_{2t} \quad (34)$$

$$\left[\omega_1(b_{2t})^{\frac{q-1}{\alpha}} + \omega_2(a_{2t})^{\frac{q-1}{\alpha}} \right]^{\frac{\alpha}{\theta-1}} = c_{2t} + k_{2t+1} - (1 - \delta)k_{2t} \quad (35)$$

$$A_{2t}k_{2t}^{\alpha}n_{2t}^{1-\alpha} = b_{2t} + \tau_{2t}b_{1t} \quad (36)$$

Let $\lambda_1, q_1, \lambda_2$ and q_2 be the multipliers on constraints (33) to (36). $\{c_i, n_i, k_i, a_i, b_i\}$, with $i \in [1, 2]$, are the choice variables for the planner. The first ten order conditions for the planning problem,\footnote{Listed in the appendix.} together with equations (33)-(36), constitute a system of 14 equations and 14 unknowns (10 choice variables and 4 multipliers), which together with the four exogenous variables (τ_1, τ_2, A_1, A_2) complete the description of the model. In the absence
of aggregate uncertainty, the model can be solved as a nonlinear forward looking deterministic system using a Newton method. This method simultaneously solves all equations for each period, without relying on local approximations.

Trade Balance. I measure the trade balance in the model as presented in the data, which is expressed as the ratio of net exports to output:

$$NX_{1t} = \frac{\tau_{1t}a_{2t} - TOT_{1t}b_{1t}}{y_{1t}}$$

(37)

In (37), TOT_{1t} represent the terms of trade of country 1, defined as the domestic price of imports over the price of exports. Since the multipliers q_1 and q_2 represent the shadow prices of goods a and b, the terms of trade of country 1 can be defined as:

$$TOT_{1t} = \frac{\tau_{2t}q_{2t}}{q_{1t}}$$

(38)

Importantly, the terms of trade now feature the presence of the trade costs on the imported good. A similar expression can also be found by computing the terms of trade as the marginal rate of transformation between the two goods in each country (see the Appendix for details).

Calibration. I use standard parameter values to calibrate the model. Following BKK (1994), I set $\gamma = -1$, corresponding to an inter-temporal elasticity of substitution of 0.5. α is set to 0.36, while $\mu = 0.34$, and gives a steady state level of hours equal to roughly one third of available time. θ is set to 1.5, while β is 0.96 and δ 0.1 to calibrate the model to annual frequencies. The trade costs are assumed to be initially equal to 2.7, which is the value suggested by Anderson and Van Wincoop (2004). ω_1 and ω_2 are calibrated to give an initial ratio between imports to output of about 0.33, as observed in Germany in 2000.
3.3 The German Surplus: Data vs. Models

I solve the model under two alternative assumptions: i) a symmetric reduction in trade costs and a symmetric increase in productivity and ii) an asymmetric reduction in trade costs and an asymmetric increases in productivity. In the case of the symmetric trade costs and productivity dynamics, I assume that both τ_1 and τ_2 decline for 8 years at a constant rate, equal to the trend observed for the CHB in manufacturing in Figure 9 and both A_1 and A_2 grow at the a constant rate, equal to the trend found for German manufacturing TFP in Figure 10. In the asymmetric case, I assume that τ_1, the trade cost for good a, declines for 8 years at the same trend as the manufacturing CHB and then remains flat, while τ_2, the trade cost for good b, remains flat for the first 8 years and then declines at the same trend of the CHB in manufacturing until it reaches the level of τ_1. Moreover, in this case A_1 grows for the first 8 years at the same rate as German TFP in manufacturing, and then it stays flat, while A_2 stays flat for the first 8 years, and then start growing at the same rate of A_1. In the experiment, hence, country 1 would represent Germany, whose productivity grows faster than the other country in the first 8 years and whose trade cost falls first.

Figure 11 reports the path of some of the endogenous variables of country 1 in the case of a symmetric trade liberalization and productivity growth processes. Intuitively, the symmetric reduction of impediments to trade does not affect the trade balance. A symmetric reduction of the import prices in country 1 and 2 leads to an equal increase in exports and imports in each country. As a result, the trade balance does not move in either country.

On the other hand, asymmetric trade liberalization and productivity growth do affect the trade balance, as reported in Figure 12. The country whose good becomes liberalized first (country 1 in the experiment) experiences a decrease in the relative price of imports later that the country whose goods becomes liberalized second (country 2). As a result, the exports in country 1 rise more in the first years, and then decline when the imported good price is decreasing. As a consequence, the trade balance of country 1 goes into surplus and then starts declining only when the liberalization of good b takes off.

Figure 13 reports on the same graph the German trade balance over GDP and the
corresponding object obtained with the model simulations for the years 2000-2015. While
the timing of the increasing of the German trade balance is not well captured by the model
under the asymmetric trade liberalization experiment, the correlation between the two series
is considerably high (0.84). Moreover, the model is able to generate a peak of trade surplus
of about 6% of GDP, fairly close to what was observed in Germany in 2007 (7.1%).

Furthermore, Figure 14 reports the trade balance dynamics obtained under two other
alternative experiments: i) an asymmetric reduction in the trade costs, with no changes in
productivity in either sector (solid line), and ii) an asymmetric increase in productivity, with
no changes to the trade costs in both sectors (dash-dotted line). For ease of comparison,
I also report the benchmark result with asymmetric dynamics in both productivity and
trade costs (dashed line). The peak of the trade surplus obtained under the scenario with
no change in productivity in either sector is in fact now higher than what obtained under
productivity growth only due to a denominator effect (growing GDP). More interestingly,
though, the model is unable to reproduce a dynamic consistent with the German data, when
only fed with an asymmetric productivity process, with no changes to the trade costs. The
key to understand the difference in the two cases, is the dynamics of investment, which
initially decreases in the first case but increase in the second. In the case of an asymmetric
reduction of trade costs, in fact, a consumption smoothing motives makes the agents only
wait to consume in the future to wait enjoying lower prices. In the case of a present increase
in productivity, instead, on the one hand there is the same tendency to smooth consumption,
which would tend to an increase in savings, but on the other hand there is also an investment
motive, which has an opposite effect on the trade balance. Quantitatively these two effects
balance out, as we see in Figure 14.

I conclude that indeed the asymmetric trade liberalization process between manufacturing
and services might potentially explain an important part of the dynamics of the German
4 Empirical Evidence

The aim of this Section is to provide empirical support to the theory presented in Section 2. Since the insight of equation (24) is a general one, I will apply it here to two different contexts. First, I’ll propose an analysis based on the asymmetry between the liberalization of trade in manufacturing versus services that I explored in Barattieri (2014). Second, I’ll analyze the current account dynamics of a sample of developing countries highly specialized in the export of agricultural goods and the import of manufacturing.

4.1 Manufacturing versus Services

The first empirical analysis I propose exploit the asymmetry in the liberalization of manufacturing and service trade for a sample of 24 OECD countries plus the BRICS.\(^{19}\) The empirical strategy here can be thought of consisting of two stages.

Stage 1: Relative Trade Liberalization Measures. In the first stage, I need to construct proxies for the terms \(\hat{\tau}_t^h - \hat{\tau}_t^f\) that appear in equation (24). I use the CHB introduced in Section 3.1 to proxy for \(\hat{\tau}_t\) in both services and manufacturing. Table 1 contains the results obtained by using (27) to build CHB indexes for service and manufacturing for 24 OECD countries and the BRICS. I report the level of the CHB in manufacturing and services in 1995 and 2008, as well as their percentage change over the period. Two main observations stand out. First, both services and manufacturing CHB indexes decline over time in most countries. Notable exceptions are the U.S., which however has the lower level of CHB in both sectors, Japan and Germany. Second, the decline of CHB in manufacturing is greater than that of services in most countries.

I then use the CHB to build *relative trade liberalization measures*. In order to compute these measures, I first divide the countries of my sample in two groups: the “goods-oriented”

\(^{19}\)The countries included are Austria, Brazil, Canada, Switzerland, China, Czech Republic, Germany, Denmark, Spain, Finland, France, Greece, Hungary, India, Ireland, Israel, Italy, Japan, Korea, Mexico, Norway, New Zealand, Poland, Portugal, Russia, South Africa, Sweden, UK, US. See the appendix for details
and the “service-oriented” countries. In order to do so, I use an average of the Revealed Comparative Advantage in Services (RCA_{SERV}). RCA_{SERV} is simply a measure of relative export specialization, computed as the ratio of the service share in total export in a given country i divided by the service share in total export for the world as a whole. Clearly, an $RCA_{SERV} > 1$ reveals a relative specialization in the export of services, while an $RCA_{SERV} < 1$ would signal the contrary. Table 2 reports the average RCA_{SERV} for all the countries in the sample. Countries like Greece, Spain, Portugal or the UK display high levels of revealed comparative advantage in the export of services, while countries like Mexico, Germany and Canada exhibit levels of RCA_{SERV} far below one. While the figures reported in Table 2 are averages over the entire period, it is important also to look at the dynamics of this indicator, which might in fact be endogenous. Figure 15 reports the evolution of RCA_{SERV} over the period 1994-2009 for five selected European Countries. While Germany displays a RCA_{SERV} consistently below one, Spain, Portugal and Greece’s RCA_{SERV} is always above one. Ireland, instead, displays a rising RCA_{SERV}, which range from being below one in the mid nineties to be well above one in the mid two-thousands.

I control how the results of the empirical analysis change when I exclude from the regression the countries that “switched” from an $RCA_{SERV} > 1$ to an $RCA_{SERV} < 1$ or vice versa. The results turn out to be stronger when excluding these countries.

I then compute for each country i a relative liberalization measure as the difference between the change in an average CHB of the sector where country i exports are concentrated and the change in country i CHB in the sector where it concentrates its imports:

$$
(\hat{\tau}_t^h - \hat{\tau}_t^f) = \Delta \left[\sum_i \omega_i CHB_i^h \right]_t - \Delta CHB_{it}^f
$$

(39)

where h and f are respectively the sectors where exports and imports are concentrated. For instance for Germany, a goods-oriented country, h would be manufacturing while f would be services. For Spain, instead, a service-oriented country, h would be services and f would be manufacturing. ω_i are weights computed as the output shares of country i in total world output. Notice that this indicator is a difference between two changes. For a
country \(i \), it is the difference between the change of the trading partners’ CHB in the sector of export specialization of country \(i \) and the change in the country \(i \) CHB in its importing sector. Hence, a positive number can reflect either that the CHB of the trading countries in the export sector of country \(i \) increased by more than country \(i \) own CHB in its importing sector, or that the country \(i \) own CHB in the importing sector decreased by more than the CHB of the trading countries in the export sector of country \(i \). In both cases, a positive number signal a high relative trade liberalization. Conversely, a negative number indicates a low relative trade liberalization.

Figure 16 reports the average relative trade liberalization for the countries in the sample. Interestingly, Spain, Portugal and Greece all features on average a high relative trade liberalization, while Germany display, on average, a low relative trade liberalization. Moreover, we observe from figure 16 how all the BRICS countries are characterized by high relative trade liberalizations, while countries like the U.S., Japan, and Germany are characterized by low relative trade liberalizations.

Stage 2: Current Account Dynamics. After having obtained an estimate of the \((\hat{\tau}_t^h - \hat{\tau}_t^f)\), I then use it to explore the relation expressed by equation (24) between current account dynamics and asymmetric trade liberalization. I use the following econometric specification (in its more complete form):

\[
\Delta\frac{CA}{GDP}_{it} = \eta_0 + \eta_1(\hat{\tau}_t^h - \hat{\tau}_t^f) + \sum_{s=1}^{S} \eta_{s+1}(\hat{\tau}_{t+s}^h - \hat{\tau}_{t+s}^f) + \psi Z_{it} + \delta_i + \delta_t + \epsilon_{it} \quad (40)
\]

where I use the current relative trade liberalization indexes \((\hat{\tau}_t^h - \hat{\tau}_t^f)\) and \(S \) of its leads. \(Z_{it} \) is a set of time varying country level controls including growth (to take into account of the other elements in equation 24), openness, GDP and per capita GDP, and a proxy for financial development. \(\delta_i \) and \(\delta_t \) are country and time fixed effects, aimed at controlling for fixed unobserved characteristics at country level and common trends over time. Finally, \(\epsilon_{it} \)

\[20\] A negative number can reflect either that the CHB of the trading countries in the export sector of country \(i \) increased by less than country \(i \) own CHB in its importing sector, or that the country \(i \) own CHB in the importing sector decreased by less than the CHB of the trading countries in the export sector of country \(i \).
is an error term, which can be interpreted as measurement error in the dependent variable, supposed to be i.i.d. normally distributed with mean zero and variance σ^2. The empirical prediction of the model outlined in Section 2 would be to find $\eta_1 < 0$ and $\eta_s > 0$. Moreover, the model has a precise testable implication, namely that $\eta_1 + \sum_{s=1}^{S} \eta_{s+1} = 0$.

Table 3 reports the results obtained using equation (40). In the first column, I regress the change in the ratio of the current account over GDP on the contemporaneous relative trade liberalization measure. The coefficient, as predicted by the model, is negative, and highly statistically significant: a country tends to experience a deficit when the restrictions to trade in its import sector fall by more than those in its export sector. In the second column I use as a regressor only one leads of the relative trade liberalization, and as expected the coefficient is positive and statistically significant: a country tends to experience a deficit if in the future it expects the impediments to trade in its export sector to fall by more than the impediments to trade in its import sector. In the third column, I include both the current and up to three leads of the relative trade liberalization measure. The coefficient on the current measure is negative, while the coefficients on all the three leads are positive. However, only the first two leads display statistically significant coefficients. In the spirit of the model, I test whether I can reject the hypothesis that $\eta_1 + \eta_2 + \eta_3 = 0$, and I cannot reject it. The overall R-squared of the regression is modest (0.127), but non-negligible. In the fourth column, I insert time varying country level control, and the main results do not change substantially. The degree of openness displays a positive and statistically significant coefficient, while the coefficient on the per capita gdp growth is negative and statistically significant. Once controlling for these two factors, the GDP, the GDP per capita and a measure of financial development do not seem to be strongly correlated with the change in the ratio of current account over GDP. In the fifth column I present the results obtained by inserting also time and country fixed effects. Again, there are no major changes to the core result. Finally, in the last column, I run the regression excluding those countries whose specialization in export changed significantly over the period considered.\footnote{The “switchers” countries are Czech Republic, Finland, Hungary, India, Ireland, Italy, Poland and Sweden.}

Interestingly, the coefficients on the current and future relative
trade liberalizations appears to be larger in this case. This is not surprising, since we are now focusing on the countries for which our division into “goods-oriented” and “service-oriented” is better targeted. Even in this last case, however, we cannot reject the hypothesis that the coefficients of the leads of the relative trade liberalization measures sum up to the coefficient of the current relative trade liberalization measure.

While highly suggestive, the results reported in Table 3 are not immune by concerns about the truly exogenous nature of the proxies used to build the relative trade liberalization measures. For this reason, I propose also a second empirical analysis, where by relying directly on tariff data, the concern about endogeneity is mostly overcome.

4.2 Agriculture versus Manufacturing

Since nothing in the model presented in Section 2 sharply characterizes the home and foreign goods to be represented by a specific industry, I propose here an analysis of the current account dynamics of a sample of developing countries who shares the following characteristics: 1) they all are highly relatively specialized in the export of agricultural goods, 2) they are all specialized in the import of manufacturing products, 3) they report data on their custom duties for the period 1995-2012. These three criteria limit the countries available to thirteen.\(^{22}\)

In this case it is simpler to build relative liberalization measures \(\left(\hat{\tau}_t^h - \hat{\tau}_t^f\right)\) by using directly tariff data for agricultural goods \((\hat{\tau}_t^h)\) and manufacturing goods \((\hat{\tau}_t^f)\).\(^{23}\) Once obtained the relative trade liberalization measures, I can use the specification expressed in equation (40).

Figure 17 reports the evolution of the current account over GDP ratio in the countries of the sample. As the Figure shows, there are cases where the current account is fairly constant (as in Costa Rica) and cases where it presents large fluctuations (as in Zambia). Figure 18 reports instead the evolution of the tariffs on Agricultural goods and those on Manufacturing.

\(^{22}\)The countries included are Argentina, Brazil, Chile, Colombia, Ecuador, Guatemala, Honduras, Malawi, Nicaragua, Paraguay, Peru, Uruguay, Zambia. See the appendix for details.

\(^{23}\)See the appendix for details.
goods. Here as well, we see cases where the two tariffs have very similar behaviors (like in Chile) and cases where the path differ significantly (like in Malawi).

Figure 19 reports a scatterplot of the average current account over GDP for the period 1995-2009 (vertical axis), against the average relative trade liberalization measure \(\left(\hat{\tau}_t^h - \hat{\tau}_t^f \right) \) over the same period (horizontal axis). The Figure present a stark negative relation between the two variables (a regression with an \(R^2 \) of 0.6), thus showing that, on average, those countries who tended to liberalize more in their import sector than in their export sector were characterized by lower current account balances.

Table 4 reports the results obtained when using the specification (40). The first column reports only the contemporaneous relative trade liberalization measure, and as expected the coefficient is negative and statistically significant. The second column includes also three leads of the relative trade liberalization measure, and the coefficients attached to them are all positive. In the case of the second lead, the coefficient is also highly statistically significant. A formal test of equality to zero of the sum of the coefficient cannot reject the hypothesis that indeed the coefficients are equal, as predicted by the model. Columns three and four add as additional control variables the real GDP growth (3), and country and year fixed effects (4). The results do not change, while the fit of the regression unsurprisingly increases.

Albeit the overall explanatory power of the relative trade liberalization is modest, I conclude from the results presented in the Tables 3 and 4 that asymmetric trade liberalizations are indeed a driver of current account dynamics, which was at least partly neglected to date.

5 Conclusion

In this paper, I propose a theoretical model where asymmetric trade liberalization can affect current account dynamics. Using the case of the asymmetric trade liberalization in manufacturing and service trade I show how this channel is potentially relevant in explaining the dynamics of the German trade surplus over the period 2000-2007. Finally, I show empirical evidence that broadly support the main predictions of the model, both using a sample of OECD countries and BRICS, concentrating mode on the asymmetries between manufac-
turing and services, and using a sample of developing countries, concentrating more on the asymmetries between manufacturing and agriculture.

This paper has some policy implications for the process of global rebalancing in general, and for the rebalancing in Europe in particular. A further liberalization of trade in services might help countries like Spain, Portugal, Greece and the UK, to fully exploit their comparative advantage in the provision of services and thus helping their rebalancing process without the need to resort solely on draconian austerity measures, as the one implemented in the period 2010-2013. A service directive aimed at liberalizing the cross-border provision of services within the EU has indeed entered into force in the period 2006-2009. However, there is still a large scope for further and deeper liberalizations in the trade of services in Europe (see Monteagudo et al, 2012).

While this is a fairly general insight, more research is clearly needed to clarify which particular services sectors might help the rebalancing process of deficit countries. These are likely to be different for the UK than for Portugal, Spain or Greece. An important point to stress is that there is not necessarily a direct link between the relative trade liberalization measures computed in Section 5.1 and specific policy action of specific countries. Take for example Germany and the case of tourism, where Germany exhibit a deficit with Greece, Spain and Portugal. Lowering the barriers to export of services in this particular case (every dollar of spending of a German tourist in Greece is an export of services from Greece to Germany) is not likely to involve more action from the German authorities than it could require it from the Greek authorities (for instance, in terms of fostering the learning of German in the operators of the tourism sector in Greece). This particular example makes clear how the passage from the theory and the evidence proposed in this paper to the reality of economic policies might be more subtle than it could at first appear.

This paper leaves open several research questions. First, it would be interesting to be able to move to a fully bilateral specification of the testable equation of the model proposed in this paper. The limit here is the relative scarcity of data on bilateral current account balances. This limit, however, might be overcome in the future. Second, it is important to
study more the evidence for relative trade liberalization using finer disaggregated data, thus moving beyond the aggregate approach used in this paper. Lastly, it would be important to incorporate in the analysis also the study of foreign direct investments and foreign affiliate sales. I plan to pursue these venues of research in the future.
A Model Appendix

A.1 Two-Period Model: The Complete Log Linearized Model

I denote with a \hat{a} the percentage deviations from the symmetric steady state. So $\hat{x} = \log \left(\frac{x}{x^*} \right)$, where x^* is the value of x at the symmetric equilibrium. Log-linearizing the model around the symmetric equilibrium described in the main texts gives us:

$$\hat{C}_2 = \sigma (1 - \beta) \hat{r}_1 + \sigma \hat{P}_1 - \sigma \hat{P}_2 + \hat{C}_1 \quad \hat{C}_2^* = \sigma (1 - \beta) \hat{r}_1 + \sigma \hat{P}_1^* - \sigma \hat{P}_2^* + \hat{C}_1^*$$ (41)

$$\hat{B}_1 = \hat{p}_1^h + \hat{Y}_1^h - \hat{P}_1 - \hat{C}_1 \quad \hat{B}_1^* = \hat{p}_1^f + \hat{Y}_1^f - \hat{P}_1^* - \hat{C}_1^*$$ (42)

$$\hat{C}_2 = \hat{p}_2^h + \hat{Y}_2^h - \hat{P}_2 + \frac{1}{\beta} \hat{B}_1 \quad \hat{C}_2^* = \hat{p}_2^f + \hat{Y}_2^f - \hat{P}_2^* + \frac{1}{\beta} \hat{B}_1^*$$ (43)

$$\hat{C}_t^h = -\theta \left(\hat{p}_t^h - \hat{P}_t \right) + \hat{C}_t \quad \hat{C}_t^* = -\theta \left(\hat{p}_t^f + \hat{\tau}_t^h - \hat{P}_t^* \right) + \hat{C}_t^*$$ (44)

$$\hat{C}_t^f = -\theta \left(\hat{p}_t^* + \hat{\tau}_t^f - \hat{P}_t \right) + \hat{C}_t \quad \hat{C}_t^* = -\theta \left(\hat{p}_t^* - \hat{P}_t^* \right) + \hat{C}_t^*$$ (45)

$$\hat{P}_t = s_h \hat{p}_t^h + s_f \left(\hat{p}_t^f + \hat{\tau}_t^f \right) \quad \hat{P}_t^* = (1 - s_h) \left(\hat{p}_t^h + \hat{\tau}_t^h \right) + (1 - s_f) \hat{p}_t^f$$ (46)

$$s_h \hat{C}_t^h + (1 - s_h) \left(\hat{\tau}_t^h + \hat{C}_t^* \right) = \hat{Y}_t^h$$ (47)

$$s_f (\hat{C}_t^f + \hat{\tau}_t^f) + (1 - s_f) \hat{C}_t^* = \hat{Y}_t^f$$ (48)

$$\hat{B}_1 + \hat{B}_1^* = 0$$ (49)

A.2 Two-Period Model Solution

In order to solve the model, the strategy is to derive all the elements that appear in equation (23) as functions of relative trade costs, the endowments, and \hat{B}_1, and then find an explicit solution for \hat{B}_1. I plug into equation (47) the home and foreign version of equation (44) for period one. I then substitute in the resulting equation the Price indexes and the aggregate consumption levels using the period 1 budget constraints (42) and the Price index definitions (46). This allows me to express:

$$\hat{p}_t^h - \hat{p}_t^f = -\frac{\alpha_1}{\alpha_2} \left(\hat{\tau}_t^h - \hat{\tau}_t^f \right) - \beta \frac{\alpha_0}{\alpha_2} \hat{B}_1 - \frac{s_f}{\alpha_2} \left(\hat{Y}_1^h - \hat{Y}_1^f \right)$$ (50)

Where I defined the following parameters (some of the signs are valid only under the restriction $\theta > 1$):
\[
\alpha_0 = \frac{s_h - s_f}{\beta} > 0
\]
\[
\alpha_1 = s_f s_h (\theta - 1) > 0
\]
\[
\alpha_2 = 2\alpha_1 + s_f > 0
\]

Moreover, It is easy to show how:

\[
\hat{P}_1 - \hat{P}_1^* = (s_h - s_f)(\hat{p}_1^h - \hat{p}_1^{f*}) - s_f \left(\hat{\tau}_1^h - \hat{\tau}_1^{f*}\right)
\]

(51)

Repeating the same procedure for period two, I get a very similar expressions:

\[
\hat{p}_2^h - \hat{p}_2^* = -\frac{\alpha_1}{\alpha_2} \left(\hat{\tau}_2^h - \hat{\tau}_2^{f*}\right) + \frac{\alpha_0}{\alpha_2} \hat{P}_1 - \frac{s_f}{\alpha_2} \left(\hat{Y}_2^h - \hat{Y}_2^{f*}\right)
\]

(52)

and

\[
\hat{P}_2 - \hat{P}_2^* = (s_h - s_f)(\hat{p}_2^h - \hat{p}_2^{f*}) - s_f \left(\hat{\tau}_2^h - \hat{\tau}_2^{f*}\right)
\]

(53)

Plugging back equations (50)-(53) into equation (23) after rearranging and defining

\[
\eta = \frac{\frac{\alpha_0}{\alpha_2} + (\sigma - 1) \left[(s_h - s_f) \frac{\alpha_1}{\alpha_2} + s_f\right]}{(1 + \beta) \left[\frac{2}{\beta} + \frac{\alpha_0 \beta}{\alpha_2}\right] + (1 + \beta) \left[(\sigma - 1)(s_h - s_f) \frac{s_f}{\alpha_2}\right]} > 0
\]

(54)

and

\[
\nu = \frac{1 - \frac{s_f}{\alpha_2} - (\sigma - 1)(s_h - s_f) \frac{s_f}{\alpha_2}}{(1 + \beta) \left[\frac{2}{\beta} + \frac{\alpha_0 \beta}{\alpha_2}\right] + (1 + \beta) \left[(\sigma - 1)(s_h - s_f) \frac{s_f}{\alpha_2}\right]} > 0
\]

(55)

gives equation (24) in the main text. From Equation (54) is possible to derive the restriction on the intertemporal elasticity of substitution that makes \(\eta\) a positive number (given \(\theta > 1\)). In particular, a sufficient condition for \(\eta > 0\) is \(\sigma > 1 - \frac{\frac{\alpha_1}{\alpha_2}}{(s_h - s_f) \frac{s_f}{\alpha_2} + s_f}\). From equation (55) we see that \(\nu\) is instead positive as long as \(\sigma < 1 + \frac{2s_h(\theta-1)}{(s_h - s_f)}\).
A.3 The Two-Country Multi-period Model

I list here the first order conditions of the planner’s problem for the two-country model illustrated in Section 3.2. λ_i and q_i, $i \in [1, 2]$ are the multipliers of the planner’s constraints (33)-(36).

The F.O.C. with respect to c_1 and c_2 read:

$$\Omega_1 \mu c_1^{\mu-1} [c_1^{\mu}(1 - n_1t)^{1-\mu}]^{\gamma^{-1}} = \lambda_1t$$ \hspace{1cm} (56)

$$\Omega_2 \mu c_2^{\mu-1} [c_2^{\mu}(1 - n_2t)^{1-\mu}]^{\gamma^{-1}} = \lambda_2t$$ \hspace{1cm} (57)

The F.O.C. with respect to n_1 and n_2 read:

$$\Omega_1 (1 - \mu)(1 - n_1t)^{-\mu} [c_1^{\mu}(1 - n_1t)^{1-\mu}]^{\gamma^{-1}} = q_1t(1 - \alpha)A_1t k_1^{\alpha}n_1^{-\alpha}$$ \hspace{1cm} (58)

$$\Omega_2 (1 - \mu)(1 - n_2t)^{-\mu} [c_2^{\mu}(1 - n_2t)^{1-\mu}]^{\gamma^{-1}} = q_2t(1 - \alpha)A_2t k_2^{\alpha}n_2^{-\alpha}$$ \hspace{1cm} (59)

These are the F.O.C. with respect to k_1 and k_2:

$$\lambda_1t = \beta E [(1 - \delta)\lambda_{1t+1} + q_{1t+1}A_1t k_1^{\alpha-1}n_1^{1-\alpha}]$$ \hspace{1cm} (60)

$$\lambda_2t = \beta E [(1 - \delta)\lambda_{2t+1} + q_{2t+1}A_2t k_2^{\alpha-1}n_2^{1-\alpha}]$$ \hspace{1cm} (61)

The F.O.C. with respect to a_1 and b_1 are:

$$q_{1t} = \lambda_1t \left[\omega_1(a_1) \frac{\theta_{a_1}}{\theta} + \omega_2(b_1) \frac{\theta_{b_1}}{\theta} \right]^{\frac{1}{\mu-1}} \omega_1 a_1^{-\frac{\theta}{\mu}}$$ \hspace{1cm} (62)

$$\tau_{2t} q_{2t} = \lambda_1t \left[\omega_1(a_1) \frac{\theta_{a_1}}{\theta} + \omega_2(b_1) \frac{\theta_{b_1}}{\theta} \right]^{\frac{1}{\mu-1}} \omega_2 b_1^{-\frac{\theta}{\mu}}$$ \hspace{1cm} (63)

Finally, the F.O.C. with respect to a_2 and b_2 are:

$$\tau_{1t} q_{1t} = \lambda_2t \left[\omega_1(b_2) \frac{\theta_{b_2}}{\theta} + \omega_2(a_2) \frac{\theta_{a_2}}{\theta} \right]^{\frac{1}{\mu-1}} \omega_2 a_2^{-\frac{\theta}{\mu}}$$ \hspace{1cm} (64)

$$q_{2t} = \lambda_2t \left[\omega_1(b_2) \frac{\theta_{b_2}}{\theta} + \omega_2(a_2) \frac{\theta_{a_2}}{\theta} \right]^{\frac{1}{\mu-1}} \omega_1 b_2^{-\frac{\theta}{\mu}}$$ \hspace{1cm} (65)

Taking the ratio of equations (63) to (62) one gets the TOT_{1t} as in equation (38) in the main text.
B Data Appendix

B.1 Manufacturing versus Services

The data sources used for this part of the paper are several. The data used for Figures 1-5 are taken from the World Bank World Development Indicators (WDI). WDI is the source also for the controls used in the empirical analysis: the GDP, the real gdp per capita, the gdp per capita growth, the real gdp the private credit over GDP. In order to build the CHB indicators, I used production as well as trade data for services and manufacturing. The data on trade in services (and hence the bilateral data used in Figures 6-8) come from the Trade in Service Database, developed by Francois and Pindyuk (2013) using OECD, Eurostat and IMF data. The data for trade in manufacturing are taken from the UN-Comtrade database. The data on gross output at the sectoral level, from the OECD-STAN database, is available only for few countries. The output data at the sectoral level for the BRICS are obtained using OECD-STAN input output matrices in order to convert value added into output values for manufacturing and total services. Using the same procedure for Germany, Japan and the United States, I obtained estimates of the output values whose correlation with the raw data is of the order of 0.98.

These data constraints limit the sample of countries to 24 OECD countries plus the BRICS reported in footnote (18).

B.2 Agriculture versus Manufacturing

The data source for this part of the paper are also several. I used WTO trade statistics data to compute Relative export specialization indexes in manufacturing, agricultural goods and services for a large sample of over 180 countries for the period 1980-2012. The same data have been used to compute relative import specialization in manufacturing. Tariffs data are taken from TRAINS. I then selected the countries belonging to the first quartile of the distribution of agricultural exporters, who were also above the median relative import specialization in manufacturing and had valid tariffs data in both manufacturing and agricultural goods for the period 1995-2012. Applying these criteria leaves me with a sample of thirteen countries, eleven Latin American and two African countries listed in footnote (21).

$\hat{\tau}_h$ is extracted by TRAINS using the program WITS. For each reporting country, it corresponds to the change in the weighted average of the applied ad valorem custom duty for the Agricultural, Forestry and Fishery products (Category 0 in the SIC) where the partner country considered is the World. $\hat{\tau}_f$ is the change in the weighted average of the applied ad valorem custom duty for the Manufactured products (Category 2 in the SIC) where the partner country considered is the World.
References

<table>
<thead>
<tr>
<th>Sector</th>
<th>MANUF 1995</th>
<th>MANUF 2008</th>
<th>∆%</th>
<th>SERV 1995</th>
<th>SERV 2008</th>
<th>∆%</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUT</td>
<td>63.01</td>
<td>40.91</td>
<td>-0.35</td>
<td>99.86</td>
<td>112.08</td>
<td>0.12</td>
</tr>
<tr>
<td>BRA</td>
<td>33.87</td>
<td>27.02</td>
<td>-0.20</td>
<td>43.42</td>
<td>35.26</td>
<td>-0.19</td>
</tr>
<tr>
<td>CAN</td>
<td>24.46</td>
<td>23.57</td>
<td>-0.04</td>
<td>32.09</td>
<td>31.44</td>
<td>-0.02</td>
</tr>
<tr>
<td>CHE</td>
<td>47.55</td>
<td>37.56</td>
<td>-0.21</td>
<td>74.91</td>
<td>76.19</td>
<td>0.02</td>
</tr>
<tr>
<td>CHN</td>
<td>13.78</td>
<td>4.00</td>
<td>-0.71</td>
<td>41.78</td>
<td>10.58</td>
<td>-0.75</td>
</tr>
<tr>
<td>CZE</td>
<td>200.51</td>
<td>56.64</td>
<td>-0.72</td>
<td>417.64</td>
<td>203.34</td>
<td>-0.51</td>
</tr>
<tr>
<td>DEU</td>
<td>7.33</td>
<td>6.74</td>
<td>-0.08</td>
<td>10.32</td>
<td>13.89</td>
<td>0.35</td>
</tr>
<tr>
<td>DNK</td>
<td>84.81</td>
<td>52.38</td>
<td>-0.38</td>
<td>130.80</td>
<td>113.09</td>
<td>-0.14</td>
</tr>
<tr>
<td>ESP</td>
<td>30.24</td>
<td>23.28</td>
<td>-0.23</td>
<td>42.86</td>
<td>32.14</td>
<td>-0.25</td>
</tr>
<tr>
<td>FIN</td>
<td>110.14</td>
<td>91.45</td>
<td>-0.17</td>
<td>198.65</td>
<td>175.50</td>
<td>-0.12</td>
</tr>
<tr>
<td>FRA</td>
<td>12.66</td>
<td>13.03</td>
<td>0.03</td>
<td>15.55</td>
<td>16.13</td>
<td>0.04</td>
</tr>
<tr>
<td>GBR</td>
<td>14.95</td>
<td>16.20</td>
<td>0.08</td>
<td>20.02</td>
<td>13.72</td>
<td>-0.31</td>
</tr>
<tr>
<td>GRC</td>
<td>192.71</td>
<td>157.32</td>
<td>-0.18</td>
<td>199.27</td>
<td>141.30</td>
<td>-0.29</td>
</tr>
<tr>
<td>HUN</td>
<td>278.33</td>
<td>52.28</td>
<td>-0.81</td>
<td>538.44</td>
<td>300.42</td>
<td>-0.44</td>
</tr>
<tr>
<td>IND</td>
<td>49.00</td>
<td>25.29</td>
<td>-0.48</td>
<td>82.94</td>
<td>36.43</td>
<td>-0.56</td>
</tr>
<tr>
<td>IRL</td>
<td>87.40</td>
<td>76.97</td>
<td>-0.12</td>
<td>101.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISR</td>
<td>182.56</td>
<td>143.13</td>
<td>-0.22</td>
<td></td>
<td>206.42</td>
<td></td>
</tr>
<tr>
<td>ITA</td>
<td>14.77</td>
<td>14.30</td>
<td>-0.03</td>
<td>21.83</td>
<td>20.32</td>
<td>-0.07</td>
</tr>
<tr>
<td>JPN</td>
<td>4.13</td>
<td>7.71</td>
<td>0.87</td>
<td>4.96</td>
<td>11.66</td>
<td>1.35</td>
</tr>
<tr>
<td>KOR</td>
<td>22.46</td>
<td>18.45</td>
<td>-0.18</td>
<td>57.02</td>
<td>55.38</td>
<td>-0.03</td>
</tr>
<tr>
<td>MEX</td>
<td>49.54</td>
<td>28.30</td>
<td>-0.43</td>
<td>96.46</td>
<td>61.68</td>
<td>-0.36</td>
</tr>
<tr>
<td>NOR</td>
<td>142.09</td>
<td>107.53</td>
<td>-0.24</td>
<td>165.69</td>
<td>120.60</td>
<td>-0.27</td>
</tr>
<tr>
<td>NZL</td>
<td>283.67</td>
<td>281.00</td>
<td>-0.01</td>
<td>336.92</td>
<td>344.93</td>
<td>0.02</td>
</tr>
<tr>
<td>POL</td>
<td>125.12</td>
<td>44.11</td>
<td>-0.65</td>
<td>204.08</td>
<td>96.94</td>
<td>-0.53</td>
</tr>
<tr>
<td>PRT</td>
<td>130.43</td>
<td>122.36</td>
<td>-0.06</td>
<td>220.62</td>
<td>214.17</td>
<td>-0.03</td>
</tr>
<tr>
<td>RUS</td>
<td>29.78</td>
<td></td>
<td></td>
<td>62.18</td>
<td>30.12</td>
<td>-0.52</td>
</tr>
<tr>
<td>SWE</td>
<td>58.18</td>
<td>48.99</td>
<td>-0.16</td>
<td>90.85</td>
<td>88.68</td>
<td>-0.02</td>
</tr>
<tr>
<td>USA</td>
<td>3.37</td>
<td>3.93</td>
<td>0.16</td>
<td>2.93</td>
<td>3.00</td>
<td>0.02</td>
</tr>
<tr>
<td>ZAF</td>
<td>128.28</td>
<td>118.54</td>
<td>-0.08</td>
<td>155.14</td>
<td>142.92</td>
<td>-0.08</td>
</tr>
</tbody>
</table>
Table 2: Average Reveled Comparative Advantage in Services

<table>
<thead>
<tr>
<th>Country</th>
<th>AV. RCA. SERV.</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRC</td>
<td>3.175</td>
</tr>
<tr>
<td>GBR</td>
<td>1.575</td>
</tr>
<tr>
<td>ESP</td>
<td>1.563</td>
</tr>
<tr>
<td>DNK</td>
<td>1.526</td>
</tr>
<tr>
<td>ISR</td>
<td>1.501</td>
</tr>
<tr>
<td>AUT</td>
<td>1.436</td>
</tr>
<tr>
<td>USA</td>
<td>1.390</td>
</tr>
<tr>
<td>IND</td>
<td>1.378</td>
</tr>
<tr>
<td>PRT</td>
<td>1.360</td>
</tr>
<tr>
<td>IRL</td>
<td>1.310</td>
</tr>
<tr>
<td>NZL</td>
<td>1.249</td>
</tr>
<tr>
<td>NOR</td>
<td>1.170</td>
</tr>
<tr>
<td>CHE</td>
<td>1.154</td>
</tr>
<tr>
<td>FRA</td>
<td>1.090</td>
</tr>
<tr>
<td>SWE</td>
<td>1.072</td>
</tr>
<tr>
<td>POL</td>
<td>0.992</td>
</tr>
<tr>
<td>ITA</td>
<td>0.978</td>
</tr>
<tr>
<td>HUN</td>
<td>0.956</td>
</tr>
<tr>
<td>FIN</td>
<td>0.889</td>
</tr>
<tr>
<td>CZE</td>
<td>0.889</td>
</tr>
<tr>
<td>JPN</td>
<td>0.732</td>
</tr>
<tr>
<td>ZAF</td>
<td>0.730</td>
</tr>
<tr>
<td>KOR</td>
<td>0.729</td>
</tr>
<tr>
<td>DEU</td>
<td>0.696</td>
</tr>
<tr>
<td>CAN</td>
<td>0.638</td>
</tr>
<tr>
<td>BRA</td>
<td>0.611</td>
</tr>
<tr>
<td>RUS</td>
<td>0.538</td>
</tr>
<tr>
<td>CHN</td>
<td>0.529</td>
</tr>
<tr>
<td>MEX</td>
<td>0.399</td>
</tr>
</tbody>
</table>
Table 3: Relative Trade Liberalization and Current Account, 24 OECD countries + BRICS

<table>
<thead>
<tr>
<th>Dep. var: $\Delta \frac{CA}{GDP_t}$</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(\hat{\tau}^h - \hat{\tau}^f)_t$</td>
<td>-4.906***</td>
<td>-5.826***</td>
<td>-4.478***</td>
<td>-4.103***</td>
<td>-6.153***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.918)</td>
<td>(0.960)</td>
<td>(1.025)</td>
<td>(1.173)</td>
<td>(1.561)</td>
<td></td>
</tr>
<tr>
<td>$(\hat{\tau}^h - \hat{\tau}^f)_{t+1}$</td>
<td>2.477***</td>
<td>3.666***</td>
<td>3.912***</td>
<td>3.864***</td>
<td>5.169***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.953)</td>
<td>(1.039)</td>
<td>(1.024)</td>
<td>(1.107)</td>
<td>(1.410)</td>
<td></td>
</tr>
<tr>
<td>$(\hat{\tau}^h - \hat{\tau}^f)_{t+2}$</td>
<td>1.928*</td>
<td>2.524***</td>
<td>2.274**</td>
<td>2.688**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.024)</td>
<td>(0.955)</td>
<td>(1.023)</td>
<td>(1.289)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(\hat{\tau}^h - \hat{\tau}^f)_{t+3}$</td>
<td>0.609</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.966)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPENNESS</td>
<td>0.906**</td>
<td>3.949***</td>
<td>5.476**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.430)</td>
<td>(1.497)</td>
<td>(2.258)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Real P.C. GDP</td>
<td>-0.096</td>
<td>-5.050</td>
<td>-0.843</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.117)</td>
<td>(4.287)</td>
<td>(5.428)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Real GDP</td>
<td>0.233**</td>
<td>5.123</td>
<td>1.356</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.106)</td>
<td>(4.299)</td>
<td>(5.504)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Real P.C. GDP Growth</td>
<td>-0.162***</td>
<td>-0.272***</td>
<td>-0.250***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.047)</td>
<td>(0.068)</td>
<td>(0.084)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CREDIT</td>
<td>-0.004</td>
<td>-0.009</td>
<td>-0.009</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.006)</td>
<td>(0.006)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time + Country FE</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.062</td>
<td>0.017</td>
<td>0.127</td>
<td>0.157</td>
<td>0.247</td>
<td>0.327</td>
</tr>
<tr>
<td>N</td>
<td>433</td>
<td>404</td>
<td>346</td>
<td>369</td>
<td>369</td>
<td>265</td>
</tr>
</tbody>
</table>

P-value of Test

$\eta_1 + \eta_2 + \eta_3 = 0$

| | 0.87 | 0.24 | 0.31 | 0.48 |

Standard Errors in Parenthesis

*, **, *** Statistically Significant at 10%, 5% and 1%
Table 4: Relative Trade Liberalization and Current Account, 13 Developing Countries

<table>
<thead>
<tr>
<th>Dep. var: $\Delta \frac{\Delta CA}{\Delta GDP}$</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(\hat{\tau}_h - \hat{\tau}_f)_t$</td>
<td>-0.372**</td>
<td>-0.268*</td>
<td>-0.244*</td>
<td>-0.345**</td>
</tr>
<tr>
<td></td>
<td>(0.144)</td>
<td>(0.138)</td>
<td>(0.137)</td>
<td>(0.153)</td>
</tr>
<tr>
<td>$(\hat{\tau}_h - \hat{\tau}f){t+1}$</td>
<td>0.070</td>
<td>0.083</td>
<td>0.018</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.143)</td>
<td>(0.142)</td>
<td>(0.160)</td>
<td></td>
</tr>
<tr>
<td>$(\hat{\tau}_h - \hat{\tau}f){t+2}$</td>
<td>0.374**</td>
<td>0.385**</td>
<td>0.409**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.151)</td>
<td>(0.149)</td>
<td>(0.168)</td>
<td></td>
</tr>
<tr>
<td>$(\hat{\tau}_h - \hat{\tau}f){t+3}$</td>
<td>-0.193</td>
<td>-0.203</td>
<td>-0.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.162)</td>
<td>(0.160)</td>
<td>(0.181)</td>
<td></td>
</tr>
<tr>
<td>Real GDP growth</td>
<td>-0.160**</td>
<td>-0.123</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.066)</td>
<td>(0.084)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Country FE	No	No	No	Yes
Year FE	No	No	No	Yes
R-squared	0.032	0.071	0.099	0.247
N	201	193	193	193

P-value of Test
$\eta_1 + \eta_3 = 0$

0.61 0.50 0.84

Standard Errors in Parenthesis

*, **, *** Statistically Significant at 10%, 5% and 1%
Figure 1: Current Account Balance Divergence in Europe

![Current Account Divergence in Europe](source: WDI)

Figure 2: Decomposition of the Trade Surplus of Germany

![Decomposition of German Trade Surplus](source: WDI)
Figure 3: Decomposition of the Trade Deficit of Spain

Figure 4: Decomposition of the Trade Deficit of Portugal
Figure 5: Decomposition of the Trade Deficit of Greece

Decomposition of Greek Trade Deficits (source: WDI)

Figure 6: Bilateral Net Trade Between Spain and Germany

Spain bilateral net trade flows with Germany
Figure 7: Bilateral Net Trade Between Portugal and Germany

Figure 8: Bilateral Net Trade Between Greece and Germany
Figure 9: **Constructed Home Bias Index, Germany, Manufacturing and Services (2000=1)**

![Graph showing CHB Index for Germany, 2000-2008](image)

Figure 10: Productivity, Germany, Manufacturing and Services (2000=1)

![Graph showing Productivity Dynamics (TFP) for Germany, 2000-2008](image)
Figure 11: Selected Endogenous Variable Dynamics, Symmetric Trade Liberalization and Productivity Increase

Figure 12: Selected Endogenous Variable Dynamics, Asymmetric Trade Liberalization and Productivity Increase
Figure 13: Trade Balance, German Data and Model

Net Exports over GDP, Germany, Data and Models

Figure 14: Trade Balance, Different Models

Asymmetries in Trade Costs vs. Productivity: NX/GDP
Figure 15: Revealed Comparative Advantage in Services, Selected Countries

Figure 16: Change in Relative Protection, Average 1995-2009
Figure 17: Current Account over GDP, Selected Developing Countries

Figure 18: Tariffs in Agricultural Goods and Manufacturing, Selected Developing Countries
Figure 19: Relative Trade Liberalization and Current Account, Selected Developing Countries

CA over GDP vs. Relative Liberalization

\[y = -2 - 10x, \; R^2 = 0.60 \]

Average Current Account over GDP vs. Average Relative Liberalization 1995–2009

AV_CA_GDP
Fitted values