Mutual Protectionism? An Assessment of the Eurasian Customs Union Arevik Mkrtchyan[☆] and Hinnerk Gnutzmann, [☆]☆ Department of Economics, European University Institute, 50133 Florence, Italy #### Abstract The recently established Eurasian Customs Union of Russia, Belarus and Kazakhstan has generated considerable research interest. Using a rich panel data, this paper analyses the determinants of the common external tariff, and its subsequent impact on trade. We find that the CET reflects a compromise of existing national regimes, and that the CU itself caused a mild increase in tariff levels above the weighed average. We identify sectors for each country where domestic protection translates into mutual protection by customs union members. We also analyse trade flow changes, and find strong impact of the customs union on intra-CU bilateral trade that is apparent in 2011 data. As we account for tariff changes faced by non-members, we attribute this growth to reduced trade costs, that is, not driven by trade diversion due to tariff changes. ## PRELIMINARY AND INCOMPLETE #### 1. Introduction Just 2 years prior to joining WTO, Russia formed the Eurasian Customs Union (ECU) with Belarus and Kazakhstan – pointing to a more regionalist approach, accompanied by rising tariffs in the partner countries. Since the Customs Union between Russia, Belarus and Kazakhstan (RBKCU) was ratified in November 2009, regional integration within this institution has proceeded at a rapid pace. A common external tariff was implemented in [★]Corresponding author; arevik.mkrtchyan@eui.eu ^{☆☆}hinnerk.gnutzmann@eui.eu January 2010 and was able to harmonise more than 85% of tariff from the outset. This meant, on average, small external tariff declines for Russia and Belarus, while increases for Kazakhstan were very pronounced¹. Internal customs controls in the union were abolished in June 2011. There are far—reaching plans to further develop the customs union into a "Common Economic Space" modelled after early European integration policies. There are current attempts to extend the membership of the Customs Union to other CIS countries, in particular Kyrgyzstan and Ukraine and possible associated revision of bound tariffs for these countries. Kyrgyzstan entered negotiations to join the customs union in late 2011. While Russia is a prime importer of the CU partners, the reverse is not true. This pattern prompted concerns of trade diversion towards Russia Tarr (2012) as a result of the CU; supporting evidence for this is provided by Isakova and Plekhanov (2012) for the case of Kazakhstan. On the other hand, whatever protectionist impetus that may have motivated the CU, the tariff schedule agreed with Russia as part of the WTO accession means that the ECU tariffs will are scheduled to fall again. The Customs Union largely addresses issues quite distinct from WTO membership, such as high internal trade costs. The members of the ECU rank near the bottom of World Bank's Trading Across Borders index, hinting at large trade costs on top of formal tariffs. The removal of the last internal customs posts – effective from July 2011 – may thus bring gains, creating the potential for integrated supply chains in the ECU area – and going beyond what could be achieved multilaterally. Yet, effects on trade volume have so far been muted: for example, Russian imports from ECU partners, have only risen in line with general trade, their overall share remaining constant around 6% of imports. Foreign exporters may also benefit from reduced trade costs, somewhat offsetting adverse tariff effects: since rules of origin Krueger (1997) are no longer in effect, they can import to the ECU market through either of its members. In time, this may lead to competitive pressure on the member countries to improve the efficiency of their borders. Thus gains of the CU, particularly through reduced trade costs with the most immediate neighbours, are not necessarily in competition with ¹Similarly, Estevadeordal et al. (2008) analyse the impact of the customs unions of Latin American countries and find no tariff complementarity of preferential liberalisation on external tariffs multilateralism and indeed likely to strengthen the incentives of Russia and its CU partners to pursue a multilateral agenda. Russia's WTO accession negotiation is an important background part of the customs union's creation. The accession has been negotiated for many years, and the slow pace of the process could have contributed to Russia's interest in the regional integration. One has to also note the immediate impact of the Customs Union on the speeding up of Kazakhstan's accession to the WTO. As Tarr and Volchkova (2010) argue, Russia had already negotiated MFN or better status before accession with most trading partners – leaving little scope for improvement of market access through WTO membership. In particular, the rules–based approach under WTO will help to reduce TBT and SPS barriers². The relatively immature Customs Union could not fulfil a similar role for Russia – or indeed the other members, which are at different stages of their individual accession processes – pointing to complementarity between regional and multilateral approaches. However the most immediate result of the establishment of customs union of Russia, Belarus and Kazakhstan has been an increase in the external tariff applied by Kazakhstan in a number of sectors and by Russia and Belarus in few other sectors. But one might wonder why such a tariff increase could not have been conducted unilaterally, that is, without prior formation of a customs union. This work describes theoretical reasoning leading to such effect and tests empirically the hypothesis based on sectoral tariff analysis. We identify for each country the sectors that we subject to such mutual protectionism We also determine the creation of the common external tariff (CET) and impacts each member had, both on aggregate and for sectors. We find that, contrary to popular belief, the CET was not based solely on Russian tariffs. Interestingly, 40% of the tariff lines (HS 6 level) were identical prior to the customs union for all members. We believe that, hence, direct comparison of Russia's tariffs in 2009 and CET in 2010 to determine Russia's impact would lead to overestimation as the already harmonised 40% would be attributed to Russia in such analysis. To avoid it, we regress the CET on past individual tariffs under several specifications. $^{^2{\}rm The~European~Commission}$ (2013) Trade and Investment Barriers Report 2013 is a good example Further, we analyse how strong is the impact of the tariffs on trade flows in a rich panel encompassing main trade partners of the customs union members and internal trade for several years. As expected, we find a negative impact of tariffs on trade. But, crucially, in our analysis we include a dummy for customs union on top of tariffs, thus to capture non-tariff impacts of the CU. We find significant positive impact of the non-tariff impact of the CU on trade. Thus, the overall effect of the customs union is composed of the tariff protectionism and decreased non-tariff trade costs. The paper is organised in a following manner. It continues by providing a summary of key facts about the customs union members' tariff and trade information. The following section presents the data. Next, the tariff determinants and protected sectors are analysed. Then we analyse the trade pattern changes and discuss. Finally, a conclusion is followed. #### 2. Literature Review Theory: PTAs, in particular FTAs but also CUs have been studied comprehensively in the regionalism literature (e.g. Freund and Ornelas (2010) provide a survey). The general theme of this literature is that a Customs Union allows member countries to internalise cross-border externalities, e.g. relating to profits arising from trade or terms of trade effects, that are ignored by policy-makers under MFN or FTA tariff setting. As a result, tariffs in a customs union tend to be higher than in a free trade area; and through higher tariffs, imports from the rest of the world are diverted towards the partner country. When decision-makers are biased towards the interests of producers, this effect is particularly strong. Hence, CUs are often seen negatively by multilateralists; however, in related theoretical work Gnutzmann and Mkrtchyan (2013), we show that even in the presence of political bias, CUs can be welfare-enhancing for members. In practice, it is important to understand to what extent Customs Unions have tariff effects, and whether they lead to trade diversion empirically. Empirical Research: There is relatively little empirical research on tariff setting in a customs union. The world's largest customs union, the European Union, was established in 1958 and then referred to as European Economic Community; data availability is thus very limited. According to P Magee and Lee (2001), the initial external tariff was set as a simple average of the previous national tariffs; but little is known about the ex ante structure of national tariffs. The tariff policy in the Mercosur area has been studied more extensively (e.g Olarreaga and Soloaga (1998), Bohara et al. (2004),Roett (1999). But in Mercosur, compliance to to the "common" external tariff is limited, around 30% of tariffs are exempted, as is the extent of internal liberalisation (Esteradeordal et al. (2001)); one may be led to believe that Mercosur is a customs union more in name than in reality. This is often reflected in statistically insignificant and quantitatively small estimates of the effect of customs unions on external tariffs. Most closely related, Olarreaga et al. (1999) study the Mercosur external tariff. Using a cross section of industries - at both the HS6 and ISIC4 levels - they estimate a Tobit model of the CET. Using the bloc's market share in world imports as a proxy for export elasticity, an approach we also
employ, and various proxies for labour and capital lobbying respectively, they seek to disentangle terms of trade and political economy motivations in Mercosur tariff determination. Terms of trade motives account for up to 28% of the variation in tariffs according to their estimates, lending some support to an efficiency rationale for customs unions. However, seeking to explain the determinants of tariffs - particularly at the fine level of disaggregation provided by HS6 - is a daunting task. An advantage of the present study is our ability to use previous years of national tariffs. Since these tariffs were presumably optimally set, they should contain all the relevant information driving domestic policy - be it lobbying or efficiency. This lets us focus on the more tractable problem how the formation of a customs union specifically influences tariff policy. Estevadeordal et al. (2008) conduct empirical study of preferential tariff liberalisation on MFN tariffs for Latin American countries. The authors regress the current MFN tariff on the preferential tariff for the same line in the previous year and on some control variables. Their main finding is that the tariff complementarity of preferential tariff liberalisation is empirically supported but not when the preferential tariff is granted in a customs union where no such effect rises. This kind of analysis, unfortunately, is not possible to do for the customs union of Russia, Belarus and Kazakhstan as prior to the customs union the countries where in an FTA, hence, virtually, no extra tariff preference was given since the creation of the CU. Tarr (2012) argues that previous attempts for deep regional integration projects of Russia were failing as they involved transfers from potential members to Russia, and in this respect the current customs union aims to reduce internal trade costs in which case other members will also benefit. The au- thor also suggests that Russia's WTO accession will be a step in the direction of reducing non-tariff barriers to trade. Krotov (2011) presents a detailed discussion of the customs union's administration system, customs legislation and clearance. He finds that the customs union is functional and, although the rules are yet to be fully formed, the necessary institutions and legislation for customs union's work are at place. Dragneva and Wolczuk (2012) discuss the impact of the customs union on the EU's relationship with eastern neighbours, in particular, Ukraine. The brief also mentions that EU has become associated with modernization and rules-based governance, promoting Russia to adopt similar approach for its regional policy, specifically, by highlighting the economic gains and rulesbased functioning of the customs union for potential members. Shepotylo (2011) calculates the tariff changes for Kazakhstan and finds that the increase in import tariffs was from 6.7 % to 11.% for simple mean tariff, and from 5.3% to 9.5% for trade-weighted tariffs. Carneiro (2013) is a good survey of the perspectives on ECU. Trade effects of PTAs have been extensively studied, particularly for the case of NAFTA (Trefler, 2001; Clausing, 2001). Of particular interest is the work of Romalis (2007), who identifies trade effects of NAFTA using differences in differences vis—a—vis Europe as an identification strategy. In his estimation, NAFTA had a substantial effect on trade volumes, particularly in protected sectors, but only moderate price and welfare effects. ## 3. The Customs Union at a Glance Membership: Since the formation of the Eurasian Customs Union in 2010, the members have been Russia, Belarus and Kazakhstan. With an annual GDP exceeding \$2trn. in PPP terms, Russia accounts for 86% of the block's GDP and 84% of its population. Kazakhstan accounts for 8% of GDP and 10% of population, while the Belarussian economy and population both amount to approximately 5% of the total. Volume of Internal Trade: In the years prior to formation of the Customs Union, internal trade between the three countries amounted to \$44bn., just shy of 16% of total imports by the three countries. The bilateral flows are highly uneven: in 2009, Russian exports to Belarus and Kazakhstan respectively accounted for 46% and 24% respectively of the total. Belarussian exports to Russia made up another 18%, and Kazakh exports to the same destination 10%. Belarussian-Kazakh trade, at just over 1% of the total, was almost insignificant. By 2011, the last year for which data are available, some changes are apparent. Internal trade grew by 75% – reflecting the low 2009 level due to the crisis – to \$62bn, slightly faster than overall trade grew: thus, the intra-CU trade share rose to 17%. Exports from Belarus and Kazakhstan to the Russian market more than doubled, making these bilateral trade flows the fastest growing. The growth rate of Kazakh-Belarussian trade is comparable, although again from a very low base. Goods Traded Internally: The importance of energy exploitation in the region is reflected in its trade patterns. Petroleum and natural gas alone accounted for \$11bn, or a third of internal trade, in 2009, largely driven by Russian transit exports to Belarus. By 2011, the last year for which data are available, trade in these two key resources had further grown - to \$15.5bn - but, due to the overall increase in internal trade, their share had diminished to a quarter. Other sectors with large absolute increases were vehicles, iron, machinery and other equipment as well as dairy products. Some of this growth was due to new product lines being internally traded, which in the two customs union years rose approximately 10% to 4473. <u>Internal Tariffs</u>: Even before the formation of the Eurasian Customs Union, internal tariffs between the members were largely eliminated. Our data set records just 8 lines where Russia imposed tariffs on its partners involving sugar, alcohol and tobacco - in the immediate pre-CU years. For Kazakhstan, there are 36 positive lines covering similar products and additionally some rice varieties. Our data set has no record of positive internal tariffs imposed by Belarus. From 2010 onwards, internal tariffs had been fully eliminated. Most-Favoured Nation Tariffs: Even prior to the Customs Union, Russia and Belarus had similar tariff regimes - with average rates around 12%. By 2009, close to 80% of MFN tariff lines by the two countries already agreed. In contrast, Kazakhstan pursued a relatively liberal policy, imposing on average just a 6.5% tariff in 2009 (reflecting a period of liberalisation after 2007 that is apparent in the sample). ³This could partly reflected data limitations, as Belarussian tariff coverage starts only in 2009. Common External Tariff: In 2010, the overwhelming majority of MFN tariffs - 4360 lines or 86% - were harmonised into the Common External Tariff, with many exceptions found in textiles. The CET mean a large tariff increase for Kazakhstan - to 10.29%, or nearly a 60% increase. But Russian tariffs fell to 10.7%, nearly a 20% cut, and Belarussian tariffs by 10%. Figure 2 provides more detailed data on the evolution of MFN tariffs in the ECU region. Other Regional Trade Agreements: Existing CIS free trade agreements are in place, notably with Ukraine. #### 4. Data The key data collection effort has focused on trade and tariff data. #### 4.1. Trade Flows Regarding trade volumes, our study requires bilateral trade flow data disaggregated at the goods level. The data disaggregated at HS 6 level for 2007-2011(whenever available, also 2012) was obtained from the ITC Trade Map. The data appears to be inaccurate for the intra-CU trade in the 2010. In particular, the trade seems to be underreported, and in order to analyse that we turned to other trade data sources - UNCTAD and Tsouz website data. Large differences between reported numbers show that 2010 is indeed problematic. Our fear is that in some cases what is denoted as 2010 trade volume is a half-year result. # 4.2. Tariff Data The tariff data was also obtained from the ITC as it provides high—quality tariff data at various classification levels. We were able to obtain applied tariffs at HS 6 level for Russia and Kazakhstan for 2007-2012 and for Belarus for 2009-2012. # 4.3. Other Data We also collected data on GDP and population from IMF World Economic Outlook. Figure 1: Trade Flows in 2010 # 5. Determining Tariff Policy The members of the customs union prior to its creation had 40% of the tariff lines (HS 6 lines) harmonised, and in November 2009 they agreed on the Common External Tariff (CET). The CET was harmonising around 86% of the tariff lines. Below we present the theoretical models of how such common tariff rises in the customs union and the actual CET determination in the customs union of Belarus, Russia and Kazakhstan. Our tariff data spans years from 2007 to 2012 and allows to determine the trends in MFN tariffs of the customs union member countries before and after the creation of the ECU. Table 1 summarises the tariff averages of the members and the number of product lines where no tariff was levied in each year. The tariff means are calculated as simple averages of the tariff lines of the HS6 disaggregation level. Figure 2 shows that Russia and Belarus had similar tariff averages prior to the ECU while Kazakhstan had noticeably lower tariff average. The creation of the customs union and tariff harmonisation led to 1,5% and 1,2% decrease in mean MFN tariff for Russia and Belarus, respectively and 3,8% | Year | N of rows | N of rows with zero tariff | | | Mean MFN tariff | | | |------|------------|----------------------------|---------|------------|-----------------|-----------|------------| | Tear | IN OI TOWS | Russia | Belarus | Kazakhstan | Russia | Belarus | Kazakhstan | | 2007 | 5052 | 369 | - | 914 | 12.118785 | - | 8.260115 | | 2008 | 5052 | 420 | - | 1154 | 12.118785 | - | 6.585293 | | 2009 | 5052 | 445 | 373 | 1164 | 12.182284 | 11.805542 |
6.493488 | | 2010 | 5052 | 554 | 554 | 712 | 10.670111 | 10.599307 | 10.295447 | | 2011 | 5015 | 547 | 547 | 655 | 11.073659 | 10.986082 | 10.818664 | | 2012 | 5205 | 550 | 550 | 641 | 10.944073 | 10.869433 | 10.736657 | Figure 2: Trends in MFN Tariffs increase in mean MFN tariff for Kazakhstan. The MFN tariff is applied among important trade partners, in particular, to the EU and US. The differences in the trade policy of Russia and Belarus on one side and Kazakhstan on the other side prior to the creation of the customs union is seen also through the number of tariff lines where no tariff is levied. In Kazakhstan 1164 product lines were subject to free trade prior to the ECU, almost three times more than in the partner countries, and we can also see that Kazakhstan got a transition period to reduce that number over the course of several year. All three members of the ECU applied various tariff regimes besides the MFN regime. Moreover, some of the most important trade partners were benefiting from the special tariff regimes. In particular, China had access to the General System of Preferences (GSP). The GSP does not apply to all the tariff lines and, wherever if applies, it typically offers 25% discount of the MFN tariff. Interesting observation here is that Russia and Belarus were including significantly more lines in the GSP than Kazakhstan prior to the ECU. That difference is somewhat compensating the MFN tariff differences before 2010 for the developing countries. In particular, if we look at Russia, the average tariff paid by the countries in the GSP in 2009 (that is, where the preference margin was positive) was 10,89% while the corresponding MFN tariff mean for these products was 14.26%. Figure 3 summarises the mean GSP tariffs for all ECU members and the number of tariff lines where the positive tariff preference over the MFN was offered. | Year | N of pref. rows | | | Mean GSP tariff | | | |------|-----------------|---------|------------|-----------------|-----------|------------| | Tear | Russia | Belarus | Kazakhstan | Russia | Belarus | Kazakhstan | | 2009 | 917 | 926 | 675 | 11.525198 | 11.214687 | 6.272090 | | 2010 | 899 | | | 10.051821 | 9.986362 | 9.671833 | | 2011 | 896 | | | 10.381456 | 10.300897 | 10.118843 | | 2012 | 1037 | | | 10.229011 | 10.160058 | 10.015255 | Figure 3: Trends in GSP Tariffs # 5.1. Theoretical Background of Empirical Strategy There is a large theoretical research interest in the tariff setting in the preferential trade agreements (PTAs). In particular, many effects point to larger external tariff under CU than FTA (see Freund and Ornelas (2010) for a review). In our theoretical work Gnutzmann and Mkrtchyan (2013) we advance the mutual protectionism hypothesis to explain the formation of a customs union. We develop a model of trade under imperfect competition, where we show that customs union is the most politically viable, or payoff-dominant, trade regime but also provides highest social welfare due to gains from cooperation as long as the trade with non-members remains positive. The model suggests that over time we are going to see more deep regional trade agreements like customs unions. The model makes several predictions that will be addressed below. First, the model suggests that the level of political influence of the sector will transfer into the protection through tariff. Thus, it will also translate into larger force during common tariff bargaining. Thus, the most protected sectors will be mutually protected by the partners. Next, customs unions are found to be harmful for the non-members within such theoretical framework due to endogenous tariff rises due to mutually protectionist alleviated internal trade costs for the non-members that could potentially compensate the negative tariff impact. The standard oligopoly model that is often employed in studies of regional agreements. Two countries, X and Y, will be the potential trade agreement partners while rest of the world is denoted as Z. Each country produces two homogeneous goods under constant returns to scale and with marginal cost normalised to zero. The first good, A, is traded in perfectly competitive markets, and each country has an arbitrary number of firms producing this good. The second good, B, is sold in imperfectly competitive markets Figure 4: Market Structure and Tariffs (firms compete a-la Cournot). The model can be trivially extended to have l goods, that are produced in imperfect competition. National markets are segmentet: a firm in country i sets the output to sell to country j, q_{ij} , separately from the output it sells in country k, q_{ik} . In general, each country has $n_i \geq 0$ firms producing good B. The representative consumer's utility is linear in the competitive good A, and quadratic in good B. Each country i may impose a tariff on country j's products, denoted by t_{ij} . Tariffs are set endogenously to maximise the objective function of the government. The market structure and tariffs imposed are visualised from the perspective of country X in figure 4 Governments. In each country, government policies regarding trade are chosen to maximise a weighed sum of consumer and producer surplus - CS_i and PS_i , respectively, and its objective is denoted as G_i . In particular, due to lobbying or other "contributions", the government may be subject to a political bias, $\alpha \geq 0$, which overweighs producer interests in its objective: $G_i = CS_i + (1 + \alpha)PS_i$. There are three possible trade regimes: Most Favoured Nation setting where no trade agreement is in place, and each country is bound to set a non-discriminatory tariff; a Free Trade Area setting where the members of the FTA trade freely between themselves and set independently their external tariff on the rest of the world; a Customs Union, or a cooperative setting, where the members trade freely between each other and have to set a common tariff on the rest of the world. The model is being solved backwards by first finding the market outcomes given the tariff and trade regime and then determining the optimal tariffs. Typically, the model assumes specific tariffs and determines the optimal specific tariff for each regime. As we would like to project the predictions of the model on the data, we have to transform the formulas of the specific tariffs into its ad valorem equivalent (AVE) tariff. We do that buy defining the AVE tariff as: $\tau = \frac{t}{p}$ where p is the price of the good found through the market equilibrium. As the model is rather standard, we will below present the AVE tariffs directly, after mapping from specific tariffs. First, in case of full symmetry, in particular, $n_i = n_j$ and the government bias $\alpha_i = \alpha_j$, then the optimal AVE tariff for each trade regime is: $$\tau^{MFN} = \frac{2n+1+2\alpha n}{2(n+1)} \tau^{FTA} = \frac{2n+1+2\alpha n}{2(2n+1)} \tau^{CU} = \frac{4n+1+4\alpha n}{2(2n+1)}$$ (1) In the customs union the tariff is determined by maximising the joint ovjectives of the governments of two countries. Note that $\tau^{FTA} < \tau^{MFN} < \tau^{CU}$ although it has been shown that when the specific tariffs are considered, $\tau^{FTA} < \tau^{CU} < \tau^{MFN}$. The AVE tariffs are easier to interpret - simply being the share of the price that is being taxed, they allow to determine trivialle the prohobitive tariff - it is the level of α such that $\tau=1$. Importantly for the empirical analysis, notice that the customs union tariff can be presented as a linear function of either MFN or FTA tariffs of the two members with equal weights. That is rather intuitive as the countries are symmetric so let us look at the case where the countries have asymmetric number of firms and government bias. Then the respective tariffs become: $$\tau^{MFN} = \frac{2n_i + 1 + 2\alpha_i n_i}{2(n_i + 1)}$$ $$\tau^{FTA} = \frac{2n_i + 1 + 2\alpha_i n_i}{2(n_i + n_j + 1)}$$ $$\tau^{CU} = \frac{2n_i + 2n_j + 1 + 2\alpha_i n_i + 2\alpha_j n_j}{2(n_i + n_j + 1)}$$ (2) We see that even though the number of firms and the bias level and, hence, unilaterally set MFN and FTA tariffs are different in the two countries, the individual tariffs enter with equal weights into the customs union tariff. Thus any analysis of the customs union tariff as a function of previous individual tariffs would result in discovering equal weights of the two previous tariffs. Together with that, the demand parameter Γ does not appear in the AVE tariff. Next, let us allow number of consumers in each country, or the country's population size, to be different. The number of consumers, whenever a representative consumer exists, does not affect the non-cooperatively set tariff. However it is not the case for a cooperatively set tariff. Indeed, if the number of consumers is normalised to 1 or is equal in each country then the maximisation objective in the customs union is simply the sum of each consumer's problem corrected for governments' biases. If instead country i has i times more consumers than its partner i then the sum of governments' welfare in the customs union is $i \cdot i \cdot i$ and the corresponding customs union tariff is: $$\tau^{CU} = \frac{4an_i + 4n_j + a + 1 + 4a\alpha_i n_i + 4\alpha_j n_j}{2(a+1)(n_i + n_j + 1)}$$ (3) The difference in size impacts the weights of the individual tariffs in the customs union tariff: country i's weight is proportional to 2a/(a+1) while country j's weight is lower and proportional to 2/(a+1). In the remaining part we are conducting regressional analysis based on several estimating strategies in order to explain the determination of the customs union tariff that later we will put together with the model's predictions. ## 5.2. Analysis of common external tariff As a starting point, we look at the harmonised tariffs in 2010 as a linear function of national tariffs prior in 2009, prior to customs union. The results are presented in column (1) in Figure
4. This simple regression provides R-squared of 94% explaining almost all tariff variation. The intercept means: for a tariff line that was completely average in all countries before CU, we expect a tariff of 9.11% in 2010. The next specification is aiming to capture the spillovers of protectionism from national level to partners in the CU. The tariffs in 2010 are regressed on national tariffs, like in the first specification, and on a variable "max". The latter variable equals to the highest tariff in 2009 among the three members for each product line. We expect the coefficient of that variable to be insignificant if the common tariff is driven by national tariffs, whether it is only Russian tariff that matters or all tariffs. However if the product lines that are protected in some countries more than others exhibit mutual protectionism effect - that is, spillover to partners, then they will have stronger impact in harmonised tariff than the average sector. The column (2) in Figure 4 summarises the estimation results; the coefficient on the "max" variable is positive, large in magnitude and positive suggesting that a sector particularly protected in any country will be protected by all members in the customs union. The highest tariff charged by any member country enters with an additional effect: a 1% increase in the maximum tariff raises the common tariff by 0.21% on top of national tariff coefficient. Interestinly, the inclusion of the "max" tariff decreases the coefficient at Russian tariffs significantly and nullifies the coefficient for Belarus. The last specification, presented in the Figure 4 in column "SS:NotHarmonised", considers the sub–sample of product lines for which the tariffs were not harmonised in 2009. This specification excludes the lines that were fully harmonised prior to the customs union and look only at lines that actually had to be harmonised. As expected, the results are broadly similar to the first specification. | | (1) | (2) | (3) | |-------------------|------------|------------|-------------| | (Intercept) | 9.11* | 6.90* | 6.80* | | | (0.05) | (0.19) | (0.21) | | l_ru | 0.64^{*} | 0.53^{*} | 0.53^{*} | | | (0.01) | (0.02) | (0.02) | | l_by | 0.09^{*} | -0.00 | -0.00 | | | (0.01) | (0.02) | (0.02) | | l_kz | 0.16^{*} | 0.13^{*} | 0.13^{*} | | | (0.01) | (0.01) | (0.01) | | max | | 0.21^{*} | 0.21^{*} | | | | (0.02) | (0.02) | | share | | | 0.38^{*} | | | | | (0.08) | | $share_sq$ | | | -0.01^{*} | | | | | (0.00) | | has_int_trade | | | -0.03 | | | | | (0.11) | | N | 4309 | 4309 | 4309 | | R^2 | 0.94 | 0.94 | 0.94 | | adj. R^2 | 0.94 | 0.94 | 0.94 | | Resid. sd | 2.97 | 2.92 | 2.91 | Standard errors in parentheses Figure 5: Exploratory Regressions <u>Benchmark Case</u>: Using data on population from the IMF's *World Economic Outlook*, the model would predict the CET formation function to give a weight ratio of 84/10/5 to the Russian, Kazakhstan and Belarus 2009 tariffs, respectively. Similar picture would rise if we look at GDP shares: 86/8/6. # 5.3. Estimation Strategy For the ECU case, we can write equation as $$t_{ECU} = \alpha + \beta_1 t_{RU_{2009}} + \beta_2 t_{BY} + \beta_3 t_{KZ} + e$$ ^{*} indicates significance at p < 0.05 First, to see the weights estimates as percentages, we may consider a restriction $\beta_1 + \beta_2 + \beta_3 = 1$. To enforce this restriction in estimation, we demean all tariffs by the Russian 2009 tariffs and obtain $$\tilde{t}_{CU} = \alpha + \beta_2 \tilde{t}_{BY} + \beta_3 \tilde{t}_{Kz} + e$$ this equation can be directly estimated using OLS and allows us to recover the parameters. | | (1) | (2) | (FE) | |-------------|------------|------------|------------| | (Intercept) | 0.41* | 0.33* | | | | (0.05) | (0.06) | | | by | 0.14^{*} | 0.14^{*} | 0.18^{*} | | | (0.01) | (0.01) | (0.01) | | kz | 0.29^{*} | 0.28^{*} | 0.27^{*} | | | (0.01) | (0.01) | (0.01) | | share | | 0.34^{*} | | | | | (0.08) | | | $share_sq$ | | -0.01^* | | | | | (0.00) | | | N | 4309 | 4309 | 4309 | | R^2 | 0.38 | 0.38 | 0.55 | | adj. R^2 | 0.38 | 0.38 | 0.54 | | Resid. sd | 3.13 | 3.13 | 2.75 | Standard errors in parentheses Figure 6: Tariff Harmonisation Estimates ### 5.4. Results for tariff determination Table 5.3 presents estimation results. In the baseline specification, the Russian tariff enters with a weight 57%, followed by Kazakhstan with 29%. Belarussian tariffs had the lowest impact on the determination of the CET, with a weight 14%. Given the large sample size, the coefficients are all rather precisely estimated and significant at the 1% level. The high R-Squared of 38% suggests that even this simple model provides a rather good fit to the data. Compared to the theoretical prediction where tariffs are driven by population (or GDP) share, the Russian weight is considerably lower (57% vs 87%) and especially Kazakh influence is stronger (29% vs 8%). Some evidence that Russia entered into compromises on the external tariff The second specification adds as an explanatory variable the share of intra-CU trade to total imports to customs union. We have included this variable as solely the import shares from partners explain 20% of variation in the CET tariff. Olarreaga et al. (1999), analysis Mercosur tariffs, brings theoretical justification why a customs union with increased terms of trade ^{*} indicates significance at p < 0.05 impact would adjust tariff lines where this impact is the strongest, and this share serves a proxy for terms of trade. As expected, the variable enters with a positive sign but also with a large magnitude and is significant. # 5.5. Sectoral Effects We now augment the model with dummies for individual sectors. This is the third specification in Figure 4. Figure 5.5.5 lists the significant subgroups, all sectors in that table are with coefficients that are significant at 1% level. The interpretation for the coefficients is following: if coefficient of a sector is 1, then the tariff in that sector is 1\% higher than what is predicted by estimated weighed average of 2009 national tariffs. Sectors with positive coefficients, exhibit positive residual over the average sector, that is, are the sectors with mutual protectionism. In particular, sector 4 was one of the most protected sectors in Kazakhstan with tariff 25,78%, significantly higher than in Russia and Belarus, and the adopted average tariffs in 2010 in that sector are between 23-24% for these countries. Instead, Russia was very successful in pushing up tariff for sector 02(Meat and edible meat offal). The meats sector was well-protected in all members prior to the CU, but way below Russia's 45% average tariff, however in 2010, all three countries adopted mean tariff rates 46% for meat. Other sectors where Russia and Belarus had very high tariffs in 2009 while Kazakhstan - moderate ones but then the protection was spilled over to Kazakhstan are: 44(Wood and etc), 48 (Paper and etc), 71(Pearls, precious stones, metals, coins, etc), 88(Aircrafts and etc). We also note that there are many more sectors with mutual protectionism effect than sectors that saw liberalisation over the weighed average during CET determination. The most prominent liberalised sector is 22 (Beverages, spirits and vinegar), which had lines at HS 6 of more than 300% tariff. We believe that the extremely high tariffs for these few lines explain the outlier behaviour of that sector. The formation of the Eurasian Customs Union provides an ideal case to study how national tariffs are translated into a common tariffs when a Customs Union is formed. There are many models explaining why tariffs should rise under a customs union. But these models are typically developed in a symmetric context, and abstract from the fact that initial tariffs - before the formation of the CU - are different. In order to estimate the impact of CU on the external tariff, we need to account for this adjustment. ### 6. Trade Effects Having analysed the changes in tariff policy, our interest naturally turns to its effects on trade patterns. To this end, we are able to draw on a rich panel data set constructed from ITC (..) Data Set: Data for this section were obtained from the *International* Trade Center (ITC) and have a panel structure. For each cross-section, the data set contains the trade flows from the main trading partners – China, Ukraine, the European Union and United States – to the ECU member countries, Russia, Belarus and Kazakhstan, as well as internal trade flows. The trade flows are disaggregated at the HS-6 level, and were constructed from the exports series, as these data seemed to be more reliable than the import series; an exception to this is trade from Russia to Belarus – the Russian statistics only reported aggregates for most of the sampling period. Thus the entire series has been replaced with Belarussian import data. Furthermore, the data set has been combined with tariff data from the ITC's MacMap database. For each good, country pair and year, we have matched the tariff that is actually applied – taking into account regional agreements and the Generalised System of Preferences. Since Belarussian tariff data were available only from 2009 onwards, we have used tariffs from this year in place of 2008 tariffs. Furthermore, to avoid erratic effects arising from small tariff lines, we have included only bilateral trade flows with a volume of at least \$100k USD. ### 6.1. Model Specification The goal of the present section is to decompose the changes in trade patterns that occurred under ECU into those that can be attributed to tariff changes and those due to non-tariff factors. In terms of notation, let i denote the industry, j the destination country, k the source country and t the year. | | product_group | name | coeff | |----|---------------|---|--------| | 1 | 01 | Live animals | 4.78 | | 2 | 02 | Meat and edible meat offal
 7.57 | | 3 | 03 | Fish, crustaceans, molluscs, aquatic invertebrates nes | 1.23 | | 4 | 04 | Dairy products, eggs, honey, edible animal product nes | 4.15 | | 5 | 15 | Animal, vegetable fats and oils, cleavage products, etc | 1.17 | | 6 | 22 | Beverages, spirits and vinegar | -13.13 | | 7 | 31 | Fertilizers | 2.71 | | 8 | 33 | Essential oils, perfumes, cosmetics, toileteries | 1.60 | | 9 | 34 | Soaps, lubricants, waxes, candles, modelling pastes | 1.95 | | 10 | 37 | Photographic or cinematographic goods | -3.37 | | 11 | 44 | Wood and articles of wood, wood charcoal | 2.73 | | 12 | 46 | Manufactures of plaiting material, basketwork, etc. | -2.29 | | 13 | 47 | Pulp of wood, fibrous cellulosic material, waste etc | -5.48 | | 14 | 48 | Paper & paperboard, articles of pulp, paper and board | 2.20 | | 15 | 51 | Wool, animal hair, horsehair yarn and fabric thereof | -4.31 | | 16 | 52 | Cotton | 0.77 | | 17 | 55 | Manmade staple fibres | 0.78 | | 18 | 57 | Carpets and other textile floor coverings | 3.44 | | 19 | 58 | Special woven or tufted fabric, lace, tapestry etc | -2.29 | | 20 | 60 | Knitted or crocheted fabric | 1.36 | | 21 | 61 | Articles of apparel, accessories, knit or crochet | -4.52 | | 22 | 64 | Footwear, gaiters and the like, parts thereof | -4.53 | | 23 | 67 | Bird skin, feathers, artificial flowers, human hair | -7.29 | | 24 | 68 | Stone, plaster, cement, asbestos, mica, etc articles | 1.12 | | 25 | 69 | Ceramic products | 1.64 | | 26 | 70 | Glass and glassware | 1.06 | | 27 | 71 | Pearls, precious stones, metals, coins, etc | 2.58 | | 28 | 72 | Iron and steel | 1.20 | | 29 | 73 | Articles of iron or steel | 1.75 | | 30 | 87 | Vehicles other than railway, tramway | 1.00 | | 31 | 88 | Aircraft, spacecraft, and parts thereof | 2.56 | Figure 7: "Residual Protectionism" by Sector Our dependent variable is x_{ijkt} , the log of bilateral flows in a given tariff line and year. This depends on the tariff charged directly, t_{ijkt} , with coefficient θ , which is expected to be negative. Furthermore, the bilateral trade flow may depend on the MFN tariff, denoted $t_{ij < MFN > t}$, with coefficient δ . The latter coefficient is expected to be positive: when the MFN tariff rises, flows that enjoy preferences are expected to increase, other things being equal, due to trade diversion. Moreover, we add a dummy variable cu_{ijt} which equals one if a country pair is linked through common membership of ECU, and zero otherwise. One—year lagged trade folws are added to control for dynamics. This specification clearly leaves a lot of unobserved heterogeneity. Thanks to the richness of the dataset, we can use rich fixed effects to control for unobserved heterogeneity. A year dummy variable α_t captures common economic shocks to the ECU member countries; the country–pair fixed effects β_{jk} . Finally γ_{ijk} covers the specific factors in the trade of a particular product and country pair. Combining these variables yields our model: $$x_{ijkt} = \alpha_t + \beta_{jk} + \gamma_{ijk} + \theta t_{ijkt} + \sigma t_{ij < MFN > t} + \delta x_{ijk(t-1)} + \phi c u_{ijt} + \epsilon_{ijkt}$$ (4) Moreover, we are aware of a measurement issue in trade flow data for the ECU in 2010. There appears to be under-reporting of trade flows in the second half of the year; our data, retrieved through the ITC, agree with the figures published by the Commission of the Customs Union on the official web site; however, official figures only cover the first half of 2010, before the ECU was in operation. Moreover, from descriptive analysis, a steep fall in the trade share of internal trade from 15% to 10% is apparent in the data, which is suggestive of mismeasurement. Since we cannot correct for this issue, we add an interaction term for customs union in 2010. Thus, our estimates of the CU effect are effectively based on the 2011 data wave. Estimation: The model is to be estimated using a random effects panel model. In particular, the idosyncratic effects γ_{ijk} are assumed to be a random variable thereby increasing efficiency of the estimates; the remaining fixed effects are included as dummies. <u>Possible Bias:</u> There are substantial concerns about endogeneity of the right-hand side variables in this equation, as indeed our theoretical work argues that not only tariffs but also the formation of CU should be considered the outcome government maximising behaviour. Thus direct estimation of this equation is unlikely to deliver consistent estimates of the causal effects (average treatment effects) of either independent variable. In particular, standard theory considerations imply that tariffs should be set highly where elasticities are low; since elasticities are not observed, OLS estimates will be downwards biased. Moreover, A CU should be formed when the expected gains are high, implying that the estimate of ϕ should be biased upwards due to selection compared to exogenous assignment of a CU. The goals of our estimation are different, however. We are interested in exploring the channels through which the Eurasian Customs Union in particular influenced trade. Thus, simple random effects estimates are sufficient for the task at hand. #### 6.2. Results Estimation results are reported in figure 8. The high estimate for the effect of Customs Union, implying the formation of CU increased internal trade flows by on average 27% due to non-tariff improvements, attracts immediate attention. As expected, the direct tariff has a negative effect, although this effect is very small; the MFN tariff in general tends raise bilateral trade, albeit again slightly. Thus, countries subject to the MFN tariff on net face slightly reduced imports when the tariff increased; those subject to preferences face small increases. Although the coefficients are precisely estimated, the magnitudes are tiny. This suggests that tariff increases were targeted towards sectors with relatively inelastic demand. The interaction between CU and 2010 is very strongly negative; we attribute this effect to the underreporting affecting said year, which we discussed above. Furthermore, the highly negative estimate on the 2009 dummy reflects the economic crisis affecting the ECU members in that period. The Customs Unions appears to have had little non-tariff effects on outsiders so far. The coefficient for the 2011 dummy indicates almost no change over 2008, the base year, or indeed 2010, after controlling for tariff effects. ## 6.3. Extended Model Specifications The regression analysis attempts to decompose the trade changes into tariff and non-tariff factors. We are working with a large panel data that has three dimensions (product, source country and year) if we fix the destination country and four dimensions if we consider the complete panel - previous three and the destination dimension. We use a fixed effects panel estimation method for the following regression model for the large panel - destination countries are. The trade value (log) x_{ijkt} - is the dependant variable where i is the product code, j - destination country, k - source country, t - year. The explanatory variables are the tariff paid by the exporting (source) country $t_{ijkt}, t_{ij < MFN > t}$ - MFN tariff applied by the destination country, lagged logarithm of trade value $\delta x_{ijk(t-1)}$, total exports of the source country E_{ikt} , total imports of the destination country M_{ijt} and three dummy variables $cu_{-}cu_{kt}$, $cu_{-}fta_{kt}$, $cu_{-}ext_{kt}$ that are equal to one when the year is 2010 or 2011 (the CU is in force) and the source is a customs union partner (Russia, Belarus, Kazakhstan), an fta partner (Ukraine) or is not a partner of an RTA respectively. We control for the time trend and for the data issues of trade between the CU countries in 2010. The totals of import and export are supposed to control the macro shocks that hit the source and destination countries that would affect their trade relations with other countries e.g. the crisis in the EU countries. The dummies are supposed to catch the non-tariff impact of the CU on the imports of the customs union countries and accommodate for the possibility that the change in non-tariff barriers impacts differently depending on which trade regime the trading countries are in. $$x_{ijkt} = \alpha t + \theta t_{ijkt} + \sigma t_{ij < MFN > t} + \delta x_{ijk(t-1)} + \beta E_{ikt} + \mu M_{ijt} +$$ $$+ \phi_1 c u_{-} c u_{kt} + \phi_2 c u_{-} f t a_{kt} + \phi_3 c u_{-} e x t_{kt} + \gamma t_{2010c u_{-} c u} + \epsilon_{ijkt}$$ (6) The estimation model above was pooling the three customs union destinations in one panel while the modified model below fixes the destination as Belarus, then Kazakhstan and then Russia. $$x_{ikt} = \alpha t + \theta t_{ikt} + \sigma t_{i < MFN > t} + \delta x_{ik(t-1)} + \beta E_{ikt} + \mu M_{it} +$$ (7) $$+ \phi_1 cu_- cu_{kt} + \phi_2 cu_- ft a_{kt} + \phi_3 cu_- ext_{kt} + \gamma t_{2010cu_{cu}} + \epsilon_{ikt}$$ (8) ## 6.4. Results The total import and export levels have predicted positive sign and large coefficients. The time trend is very small but negative. We see that in the | Coefficient | Estimate | Std. Error | t-value | Pr(> t) | |---------------------|----------|------------|---------|---------------| | (Intercept) | 0.934 | 0.032 | 29.250 | ; 2.2e-16*** | | factor(year)2009 | -0.512 | 0.008 | -63.842 | ; 2.2e-16*** | | factor(year)2010 | 0.058 | 0.009 | 6.611 | 3.838e-11*** | | factor(year)2011 | 0.030 | 0.009 | 3.451 | 0.00055 *** | | factor(pair)CN-BY | 0.038 | 0.040 | 0.953 | 0.3407666 | | factor(pair)CN-KZ | 0.139 | 0.031 | 9.000 | ; 2.2e-16 *** | | factor(pair)EU-BY | 0.094 | 0.032 | 2.965 | 0.0030239 ** | | factor(pair)EU-KZ | 0.058 | 0.031 | 1.852 | 0.0640959 . | | factor(pair)EU-RU | 0.280 | 0.031 | 9.070 | ; 2.2e-16 *** | | factor(pair)KZ-BY | -0.326 | 0.090 | -3.622 | 0.0002923 *** | | factor(pair)KZ-RU | 0.099 | 0.039 | 2.524
 0.0116122 * | | factor(pair)RU-BY | -0.055 | 0.031 | -1.804 | 0.0711740 . | | factor(pair)RU-KZ | 0.059 | 0.031 | 1.920 | 0.0548736 . | | factor(pair)UA-BY | -0.053 | 0.034 | -1.546 | 0.1221981 | | factor(pair)UA-KZ | 0.020 | 0.035 | 3.721 | 0.0001988 *** | | factor(pair)US-BY | -0.012 | 0.063 | -0.191 | 0.8488518 | | factor(pair)US-KZ | 0.057 | 0.039 | 1.453 | 0.1461658 | | y2010_cu | -0.443 | 0.02 | -26.421 | ; 2.2e-16 *** | | cu | 0.273 | 0.015 | 18.210 | ; 2.2e-16 *** | | tariff_ave | -0.004 | 0.001 | -8.698 | ; 2.2e-16 *** | | $tariff_mfn$ | 0.002 | 0.000 | 5.774 | 7.77e-09 *** | | $l.log_trade_val$ | 0.877 | 0.002 | 498.514 | ; 2.2e-16 *** | | R-Squared | 0.78161 | | | | | Adj. R-Squared | 0.78135 | | | | Figure 8: Panel Estimation Results pooled panel the coefficients of paid tariff and the applied MFN tariff are practically zero as we combined countries that are in an FTA and a CU with the importing countries. That could arise if imports were inelistic to the tariff variations, as well as if tariffs do have a negative impact on imports but they are applied strategically to the products with particular import growth. Importantly, the there is a positive significant and large impact on the imports to the customs union countries that is different from tariffs and total trade trends in the years 2010 and 2011 for all types of the trade partners, but particularly strong for the customs union partners. This effects are attributed to the non-tariff trade cost changes. The results for individual estimations are presented in the Appendix. ## 6.5. Estimation with Border Removals Impact The models before were controlling for the existence of the CU, however once we think of non-tariff costs that changes with the creation of the CU, the first candidate is the removal of the borders among members. As the time-line of the CU indicates, the borders were removed in two stages: first, in 2010 between Russia and Belarus and only in 2011 between Russia and Kazakhstan. Thus we next want to capture specifically that effect by introducing a variable that denotes whether the borders between the destination country and its CU partners are removed or not. That dummy is one for Russia and Belarus both in 2010 and 2011 and for Kazakhstan only in 2011. Finally, the estimating model is very similar to the previous - we now estimate the impact of border removals for the CU partners, FTA partner and no-RTA trade partners by interacting the border removal dummy with the source countries for each regime $$.x_{ijkt} = \alpha t + \theta t_{ijkt} + \sigma t_{ij < MFN > t} + \delta x_{ijk(t-1)} + \beta E_{ikt} + \mu M_{ijt} +$$ $$+ \phi_1 border_cu_{jkt} + \phi_2 border_fta_{jkt} + \phi_3 border_ext_{jkt} + \gamma t_{2010cu_cu} + (10)$$ #### 6.6. Results The main notable difference when we specifically control for the border removals from the specification where we were controlling for the customs union existence is that the border removal helped even more the customs union partners while for the FTA partner and the rest of the trade partners (China, EU, US) the effect is still positive and large but smaller in the first specification. That is rather intuitive as the CU partners enjoy the unique environment of trading across borders without customs checks. | Variable | Coefficient | |--------------------|--------------------| | | (Std. Err.) | | $cu_external$ | 0.152**
(0.010) | | | , | | $cu_cupartner$ | 0.394** | | | (0.015) | | $cu_ftapartner$ | 0.158** | | | (0.015) | | $tariff_ave2$ | 0.000 | | | (0.001) | | src_total_exp2 | 0.498** | | | (0.006) | | dst_total_imp2 | 0.399** | | | (0.005) | | year | -0.072** | | | (0.004) | | $L.trade_val2$ | 0.014** | | | (0.004) | | $tariff_mfn2$ | 0.001 | | | (0.001) | | year2010cupartner | -0.391** | | | (0.012) | | Intercept | 142.224** | | | (8.903) | | N | 74615 | | \mathbb{R}^2 | 0.278 | | F (23991,50623) | 1953.184 | Figure 9: All countries |
Variable | Coefficient | (Std. Err.) | | |--------------------|-------------|-------------|--| | bord_cupartner | 0.420 | (0.012) | | | $bord_ftapartner$ | 0.136 | (0.015) | | | $bord_{external}$ | 0.122 | (0.009) | | | $tariff_ave2$ | -0.001 | (0.001) | | | src_total_exp2 | 0.503 | (0.006) | | | dst_total_imp2 | 0.381 | (0.005) | | | year | -0.060 | (0.004) | | | $L.trade_val2$ | 0.016 | (0.004) | | | $tariff_mfn2$ | 0.003 | (0.001) | | | year2010cupartner | -0.267 | (0.009) | | | Intercept | 118.856 | (7.437) | | | | | | | | N | 740 | 615 | | | \mathbb{R}^2 | 0.287 | | | | F (23991,50623) | 2038 | 3.519 | | Figure 10: Border effects #### 7. Discussion The customs union, although only few years in place, already attracted the attention of researchers. In this section we summarise the findings of these works and discuss where our contribution lies within the literature. Coronel et al. (2010) ⁴ briefly review the Kazakh experience of the customs union in the context of an IMF country report. They note as direct impacts the increased tariff revenue that will accrue to the Kazakh government and argue that some trade diversion may arise towards other CU member from other FSU countries, but do not believe that Chinese imports will be strongly affected. Instead, they believe effects of CU on the neighbouring Central Asian countries to be more significant. The authors note that implementation of the customs union was still not fully operational in practice, specifically, relating to mutual recognition of documents. Related, Dragneva and Kort (2012) concludes that the legal basis of CU implementation is relatively weak $^{^4}$ The table of tariff rates on p. 17 seems to be incorrect due to missing specific rates in TRAINS at the present stage. Bank (2012) constructs a computable general equilibrium model of the Kazakh economy to estimate the welfare effects from customs union. There is relatively little in the review of trade flows post—CU, instead the focus is on simulation. The authors estimate that currently Kazakhstan is losing 0.2% of GDP due to deadweight losses associated with the higher external tariff; they then proceed to estimate "optimistic" and "pessimistic" scenarios for the future development of the customs union and conclude the effects could be either mildly negative or mildly positive, but even in the latter case gains are estimated to be small compared to WTO accession. Isakova and Plekhanov (2012) investigate the impact of the customs union on the structure of imports in Kazakhstan. They note that Kazakh–Russian trade fell before the customs union became effective, creating the possible problem that increases in bilateral trade could be due to a natural recovery – which would have happened even in the absence of a CU being formed – rather than causal. Using ITC Trade Map time series data from 2006–2010 disaggregated at the 10–digit level and statutory tariffs the authors then estimate a panel of the form $$\Delta I M_{j,t} = \alpha \Delta d_{j,t} + \beta I M_{j,t-1} + \lambda Z_{j,t} + \epsilon_{j,t}$$ (11) with IM being the (log) import flows, d the change in the tariff, and Z a vector of controls, which include lagged import changes (to account for possible natural recovery effects). Their parameter of interest is α - captures change in trade due to change in tariffs, and the model is separately estimated by trading partner. In addition, there are fixed effects at the product group (i.e. 2 digit) level. Estimated for the customs union partners, their model yields a positive and significant estimate of α . A 1% increase in tariffs would promote intra–CU by 0.8%. For other trading partners – they consider China, European Union, CIS and Rest of the World, the estimate is of α is negative, but small and not significant at the 5% level. They conclude that the customs union had a small impact on trade promotion and some evidence of trade diversion. Using similar strategy, Isakova et al. (2013) extends the previous work to include Russia and Belarus. The study explains the change in the trade between 2009 and 2010 through tariff changes. They find some trade creation for Russia with the rest of the world due to tariff falls in that country. The find positive impact of tariff increases on imports from Russia. The authors note that the magnitude is however small and they anticipate that the larger benefits could come from reduced internal trade costs. #### 8. Conclusion One of the most immediately noticed impacts of the customs union of Russia, Belarus and Kazakhstan was the rise of the import tariffs in Kazakhstan. Furthermore, suggestions were made that the common external tariff (CET) was dictated by Russia. We discuss in this work that as a larger market, Russia could be theoretically expected to have a large influence in the common tariff, even in the absence of any "power abuse". However we find that Russia had much lower impact in tariff determination than GDP-weighed bargaining would suggest. Depending on specification, Russian role varies roughly between 53-64\%, even if we only look at the tariffs that were not harmonised prior to the customs union. As the 40% percent of tariff lines were identical for all three members prior to the customs union, counting the share of the lines of the CET that were equal to the Russian ones in 2009 overestimates Russia's influence. Having said that, we find that Russia and Belarus both had more highly protected sectors than Kazakhstan. In the CET for most of these highly protected sectors we observe mutual protectionism - the sectors that were not protected before in partner markets, become protected. In our panel analysis of the bilateral trade flows (imports for each pair) we find a strong positive impact of the customs union on import both for members and non-members. This effect that we attribute to the reduced trade costs from non-tariff barriers within the customs union is of much higher magnitude than the negative impact of tariffs for the non-members
suggesting that the overall impact of the customs union is positive for non-members, thus rejecting trade diversion. Here it is important to note that from anecdotal evidence, people in Kazakhstan experienced increase in prices of products from China. This increase could be due to tariff changes but also could be because of the tighter customs controls between Kazakhstan and Kyrgyzstan, as there was a wide-spread smuggling of cheap Chinese products from Kyrgyzstan to Kazakhstan. Thus, even in case of no trade diversion from non-members, one should not ignore the negative impact of price increases in Kazakhstan when assessing the overall impact. Our tariff data includes years 2011 and 2012 and shows continuing harmonisation between members and the fall of CET. And although Russia joining the WTO only towards the end of 2012, the decrease in the CET could either be explained by further moderation of Russian and Belarussian tariffs with Kazakhstan's 2009 tariffs or requirements imposed by WTO accession protocol. Determining which of the two caused mild decreases of the CET in 2011 and 2012, though an interesting challenge, is left out of scope of this project. #### References - Bank, W. (2012). Assessment of costs and benefits of the customs union for kazakhstan. Technical report, World Bank. - Bohara, A. K., Gawande, K., and Sanguinetti, P. (2004). Trade diversion and declining tariffs: evidence from mercosur. *Journal of International Economics*, 64(1):65–88. - Carneiro, F. (2013). What promises does the eurasian customs union hold for the future? World Bank-Economic Premise, (108):1–5. - Clausing, K. A. (2001). Trade creation and trade diversion in the canada—united states free trade agreement. Canadian Journal of Economics/Revue canadienne d'économique, 34(3):677–696. - Coronel, A., Al-Eyd, A., and Rozhkov, D. (2010). Republic of Kazakhstan: Selected Issues. Number 10-237. International Monetary Fund. - Dragneva, R. and Kort, J. D. (2012). Legal regime for free trade in the commonwealth of independent states. *International and Comparative Law Quarterly, forthcoming*, page to appear. - Dragneva, R. and Wolczuk, K. (2012). Russia, the eurasian customs union and the eu: Cooperation, stagnation or rivalry? *Chatham House Briefing Paper REP BP*, 1. - Esteradeordal, A., Goto, J., and Saez, R. (2001). The new regionalism in the americas: the case of mercosur. *Journal of Economic Integration*, 16(2):180–202. - Estevadeordal, A., Freund, C., and Ornelas, E. (2008). Does regionalism affect trade liberalization toward nonmembers? *The Quarterly Journal of Economics*, 123(4):1531–1575. - European Commission (2013). Trade and Investment Barriers Report 2013. - Freund, C. and Ornelas, E. (2010). Regional trade agreements. World Bank Policy Research Working Paper Series, Vol. - Gnutzmann, H. and Mkrtchyan, A. (2013). Customs unions: More to come? *mimeo*. - Isakova, A., Koczan, Z., and Plekhanov, A. (2013). How much do tariffs matter? evidence from the customs union of belarus, kazakhstan and russia. Technical report. - Isakova, A. and Plekhanov, A. (2012). Customs union and kazakhstans imports. *EBRD Working Paper*, forthcoming. - Krotov, I. (2011). Customs union between the republic of belarus, the republic of kazakhstan and the russian federation within the framework of the eurasian economic community. *World Customs Journal*, 5(2):133. - Krueger, A. O. (1997). Free trade agreements versus customs unions. *Journal of Development Economics*, 54(1):169–187. - Olarreaga, M. and Soloaga, I. (1998). Endogenous tariff formation: the case of mercosur. The World Bank Economic Review, 12(2):297–320. - Olarreaga, M., Soloaga, I., and Winters, L. A. (1999). What's behind Mercosur's common external tariff?, volume 2231. World Bank Publications. - P Magee, S. and Lee, H.-L. (2001). Endogenous tariff creation and tariff diversion in a customs union. *European Economic Review*, 45(3):495–518. - Roett, R. (1999). Mercosur. Wiley Online Library. - Romalis, J. (2007). Nafta's and cusfta's impact on international trade. *The Review of Economics and Statistics*, 89(3):416–435. - Shepotylo, O. (2011). Calculation of the tariff rates of kazakhstan before and after the imposition of the customs union common external tariff in 2010. *Mimeo. Washington, DC: World Bank.* - Tarr, D. (2012). The eurasian customs union among russia, belarus and kazakhstan: Can it succeed where its predecessor failed? *Belarus and Kazakhstan: Can It Succeed Where Its Predecessor Failed*. - Tarr, D. and Volchkova, N. (2010). Russian trade and foreign direct investment policy at the crossroads. World Bank Policy Research Working Paper Series, Vol. - Trefler, D. (2001). The long and short of the canada-us free trade agreement. Technical report, National Bureau of Economic Research. # 9. Appendix - 9.1. Timeline of CU Implementation Key Events in the formation of RBKCU were⁵ - In 2009 heads of states of Russia, Belarus and Kazakhstan have signed and ratified international agreements that formed the basis of Customs Union. - In November of the same 2009 the decision to create a common customs space with common external tariff on the territory of the three countries from January, 1st 2010 was taken. - January, 1st 2010, the common external tariff became effective. - From July 2010 the Customs Code of the Customs Union became effective. - From July, 1st 2011 the customs control was removed from between the CU countries. The control was moved to the external borders of the CU. - In October 2011 it was announced that Kyrgyzstan would join the Customs Union - In the same month the Commission of the CU has brought to accordance the norms of the Customs Union to the norms of the WTO. Moreover, in case of accession to the WTO, the norms of that organisation would have priority over the norms of the Customs Union. - 9.2. Estimation Results for Trade Effects for Individual Destination Countries ⁵Based on http://www.rfca.gov.kz/7377, http://www.tsouz.ru (Official website of the Customs Union), "Nezavisimaya Gazeta", 12.10.2011 | Variable | Coefficient | |--------------------|-------------| | | (Std. Err.) | | cu_external | 0.086** | | | (0.021) | | cu_cupartner | 0.108** | | • | (0.028) | | cu_ftapartner | 0.044 | | | (0.029) | | $tariff_ave2$ | -0.001 | | | (0.002) | | src_total_exp2 | 0.095** | | | (0.011) | | dst_total_imp2 | 0.587** | | | (0.012) | | year | -0.029* | | | (0.012) | | $L.trade_val2$ | -0.106** | | | (0.009) | | $tariff_mfn2$ | 0.002^{*} | | | (0.001) | | year2010cupartner | -0.055** | | | (0.019) | | Intercept | 59.659* | | | (23.933) | | | | | N | 15090 | | \mathbb{R}^2 | 0.287 | | F (5894,9195) | 369.609 | Figure 11: Belarus | Variable | Coefficient | |--------------------|-------------| | | (Std. Err.) | | cu_external | 0.161** | | | (0.022) | | cu_cupartner | 0.582** | | • | (0.030) | | cu_ftapartner | 0.188** | | • | (0.036) | | tariff_ave2 | -0.006** | | | (0.002) | | src_total_exp2 | 0.360** | | • | (0.013) | | dst_total_imp2 | 0.374** | | • | (0.010) | | year | -0.070** | | v | (0.009) | | $L.trade_val2$ | 0.019^{*} | | | (0.008) | | $tariff_mfn2$ | 0.003^{*} | | | (0.001) | | year2010cupartner | -0.900** | | <u> </u> | (0.023) | | Intercept | 139.666** | | | (18.264) | | | | | N | 20440 | | \mathbb{R}^2 | 0.277 | | F (6561,13878) | 530.940 | Figure 12: Kazakhstan | Variable | Coefficient | |--------------------|--------------------| | | (Std. Err.) | | cu_external | 0.153** | | | (0.013) | | $cu_cupartner$ | 0.162** | | | (0.023) | | $cu_ftapartner$ | 0.165** | | | (0.019) | | $tariff_ave2$ | 0.007** | | | (0.002) | | src_total_exp2 | 0.849** | | _ | (0.009) | | dst_total_imp2 | 0.299** | | | (0.006) | | year | -0.069** | | | (0.006) | | $L.trade_val2$ | 0.054^{**} | | | (0.005) | | $tariff_mfn2$ | -0.002^{\dagger} | | | (0.001) | | year2010cupartner | -0.090** | | | (0.020) | | Intercept | 133.089** | | | (11.079) | | | | | N | 39085 | | \mathbb{R}^2 | 0.38 | | F (11554,27530) | 1686.177 | Figure 13: Russia