Trade Liberalization and Heterogeneous Firm Models: An Evaluation Using the Canada - US Free Trade Agreement*

Holger Breinlich Alejandro Cuñat
University of Essex and CEP LSE

June 23, 2009

PRELIMINARY! PLEASE DO NOT CIRCULATE!

Abstract

We examine the qualitative and quantitative predictions of a heterogeneous firm model à la Melitz (2003) in the context of the Canada - US Free Trade Agreement (CUSFTA) of 1989. For this purpose, we calibrate our model to the pre-trade liberalization stage, simulate the trade liberalization, and compute the resulting growth rates of Canadian industry productivity, exports and imports. We compare them with Trefler’s (2004) estimates of the effects of CUSFTA. Our results show that our model performs well in replicating the qualitative aspects of Trefler’s results. In particular, we correctly predict that US tariff cuts have smaller productivity enhancing effects than Canadian tariff reductions due to the entry of less efficient exporters. Quantitatively, the model tends to underpredict the impact of CUSFTA on growth rates of productivity, but overpredicts the increase in Canadian exports and imports. We discuss how liberalization-induced changes in the firm-level productivity distribution can reconcile the model with the evidence.

1 Introduction

Since the seminal contribution by Melitz (2003), heterogeneous firm models have become a widely used instrument in the ‘toolkit’ of international economists. These models were motivated by a number of stylized facts: (i) the existence of large productivity differences among firms within the same industry; (ii) the higher productivity of exporting

*We are grateful to Marc Melitz and Alex Michaelides for helpful discussions. We would also like to thank seminar participants at CEU and LSE for comments and suggestions. All errors remain ours. Cuñat gratefully acknowledges financial support from CICYT (SEJ 2005-01365).
firms as compared to non-exporting firms; (iii) the large levels of resource reallocations across firms within exporting industries following trade liberalization reforms; and (iv) the resulting gains in aggregate industry productivity. In a generalization of the Krugman (1979, 1980) model, the introduction of within-industry productivity heterogeneity and beachhead costs enables this class of models to produce equilibria and comparative statics along the lines of these facts.

While these models are thus broadly consistent with available empirical evidence, a thorough evaluation of their qualitative and quantitative predictions with regards to trade liberalization is still outstanding. This is despite the fact that the models’ predictions on the link between trade liberalization and changes in aggregate productivity or trade flows are of first-order importance for economic policy and welfare analysis. In this paper, we attempt for the first time to provide such an evaluation. We go beyond the stylized facts listed above and ask to what extent heterogenous firm models in the tradition of Melitz (2003) are able to replicate both qualitative and quantitative findings from a specific trade liberalization.

We do so in the context of the Canada - US Free Trade Agreement of 1989 (henceforth, CUSFTA). As has been argued elsewhere, CUSFTA is an ideal setting for the evaluation of trade liberalization episodes (see Trefler, (2004)). It was a ‘pure’ trade liberalization in the sense that it was not accompanied by any other important economic reform, nor was it a response to a macroeconomic shock. It was also largely unanticipated since its ratification by the Canadian parliament was considered highly unlikely as late as November 1988.¹ And finally, the main instrument of liberalization were tariff cuts which are easily quantifiable and as such ideally suited for an econometric analysis.

Not surprisingly then, CUSFTA has been extensively studied over the past decade (e.g. Trefler (2004); Head and Ries (1999) and (2001)). We take the results of these studies as our starting point, in particular Trefler (2004). Consistent with the stylised facts outlined above, Trefler finds that CUSFTA led to strong productivity increases in Canadian manufacturing which to a large extent were due to a reallocation of market shares towards high-productivity firms. He also uncovers some more subtle effects. For example, Canadian tariff cuts had a much stronger effect on Canadian productivity gains than US tariff reductions. The magnitudes of some of the effects documented by Trefler are also astonishing - the third of Canadian manufacturing industries subject to the highest domestic tariff cuts saw productivity increase by 15% over the eight years following the implementation of CUSFTA.

The goal of our analysis is to evaluate the extent to which a version of Melitz’s heterogeneous firm model can account for these facts, both qualitatively and quantitatively. We begin by constructing a Melitz-style model which captures the main features of the

¹See Breinlich (2008) for a discussion of this point. Brander (1991) provides details of the political context in which the agreement was signed.
Canadian-US liberalization experience. In particular, we allow for asymmetries across
countries in terms of size, bilateral tariffs and parameter values such as fixed costs. We
then calibrate the model’s parameters to the pre-liberalization period, simulate the lib-
eralization using actual tariff cuts, and confront the model’s predictions with regards to
industry productivity growth and trade flows with the empirical evidence provided by
Trefler.

Our results indicate that the model performs well in replicating the qualitative fea-
tures of Trefler’s results. Consistent with his empirical estimates, our model predicts an
asymmetric effect of Canadian and US tariff reductions on aggregate Canadian produc-
tivity, with Canadian tariff cuts having the larger impact. Our model also captures the
broad qualitative patterns of the effects of tariff reductions on Canada-US trade flows.
The results of a comparison of the quantitative predictions of our model with Trefler’s
estimates are more mixed. We only predict up to a fifth of the estimated impact of
liberalization on aggregate labour productivity. On the other hand, we overestimate the
increase in Canadian exports and imports by a factor of at least two, and up to a factor
of 30 in some simulations!

We are not the first to calibrate models with heterogeneous firms. Eaton and Kortum
(2002) use international trade flows to calibrate a Ricardian model with perfect competi-
tion and perform various counterfactual policy experiments. Bernard et al. (2003) use a
modified version of Eaton and Kortum (2002) to explain differences between US exporting
and non-exporting manufacturing firms and to analyse the effects of several trade-related
policy changes. Irarrazabal and Oproomolla (2005) also use the Eaton-Kortum model to
study Chile’s liberalization experience of the 1970s and 1980s. Del Gatto et al. (2006)
calibrate the model by Melitz and Ottaviano (2008) on European data to evaluate the
benefits of trade liberalization in the EU.

None of these contributions uses Melitz’s original contribution as their modelling
framework. In contrast to these papers, we are also not primarily interested in coun-
terfactual experiments. Rather, we see our calibration exercise as a way to ‘test’ the
fundamental predictions of models of the class of Melitz (2003). The Canada-US Free
Trade Agreement together with Trefler’s seminal study provide an optimal setting for this
endeavour. In particular, we are not obliged to compare our model’s prediction to the
raw moments of the data. Using Trefler’s empirical techniques, we can instead isolate the
effect of tariff cuts from the large number of confounding factors which also influenced
productivity and trade over the period under study and which will never be fully captured
by a stylised model such as ours.

We also contribute to the literature by providing a tractable extension of Melitz
(2003) to an asymmetric multi-country setting. In this, our paper is related to recent

2Two recent papers, Eaton et al. (2008) and Armenter and Koren (2009) also explore the quantitative
performance of Melitz (2003), but focus their attention on the model’s export features.
contributions by Melitz and Ottaviano (2008) and Chaney (2008). Finally, our paper also relates to a number of papers which have used CUSFTA for testing trade theories. For example, Head and Ries (1999) analyse the impact of tariff cuts on the number and scale of Canadian firms in order to test competing models of imperfect competition. Head and Ries (2001) use CUSFTA to evaluate Krugman and Armington style models of international trade.

The rest of the paper is structured as follows. In section 2, we revisit Trefler’s results and extend his methodology to additional variables of interest. Section 3 discusses our extension of the Melitz model. Sections 4 and 5 evaluate the model’s qualitative and quantitative predictions in the light of Trefler’s results. In section 6 we discuss how liberalization-induced changes in the firm-level productivity distribution can reconcile the model with the evidence. Section 7 concludes.

2 Revisiting Trefler’s Results for Trade and Productivity

Trefler (2004) tries to estimate the causal impact of CUSFTA-mandated reductions of Canadian and US tariffs on a set of variables such as employment, labour productivity and trade. His identification strategy thus needs to isolate these effects from a large number of confounding factors. He starts from a difference-in-differences specification in which he regresses changes in the dependent variable (e.g. labour productivity growth) on changes in US and Canadian tariffs pre- and post-CUSFTA:

\[(\Delta y_{i1} - \Delta y_{i0}) = \beta_0 + \beta^CA_i (\Delta t^CA_{i1} - \Delta t^CA_{i0}) + \beta^US_i (\Delta t^US_{i1} - \Delta t^US_{i0}) + \varepsilon_i,\]

where \(\Delta y_{i1} - \Delta y_{i0}\) is the annualized double log-difference in the dependent variable of interest in industry \(i\). That is, \(\Delta y_{i1} - \Delta y_{i0} = (\ln Y_{i,1996} - \ln Y_{i,1988})/8 - (\ln Y_{i,1986} - \ln Y_{i,1980})/6\). Likewise, \(\Delta t^CA_{i1} - \Delta t^CA_{i0}\) and \(\Delta t^US_{i1} - \Delta t^US_{i0}\) represent the double difference in Canadian and US tariffs, e.g. \(\Delta t^CA_{i1} - \Delta t^CA_{i0} = (t^CA_{i,1996} - t^CA_{i,1988})/8 - (t^CA_{i,1986} - t^CA_{i,1980})/6\).

Trefler also tries to control for industry-time varying trends and general business cycle effects. He addresses the first issue by including changes in the dependent variable for the US economy as an additional regressor.\(^3\) He also constructs a ‘business cycle control’ which is in essence an industry-specific prediction of the effect of business cycle conditions.\(^3\) Trefler notes that this ‘US control’ might be endogenous. He thus also constructs an identical control variable using UK and Japanese data and instruments for the original US control. His results are robust to the use of these alternative approaches.

\(^3\)Trefler notes that this ‘US control’ might be endogenous. He thus also constructs an identical control variable using UK and Japanese data and instruments for the original US control. His results are robust to the use of these alternative approaches.
on the dependent variable:

$$\Delta y_{i1} - \Delta y_{i0} = \beta_0 + \beta^{CA}_i (\Delta t^{CA}_{i1} - \Delta t^{CA}_{i0}) + \beta^{US}_i (\Delta t^{US}_{i1} - \Delta t^{US}_{i0}) + \beta_y (\Delta y^{US}_{i1} - \Delta y^{US}_{i0}) + \beta_b (\Delta b_{i1} - \Delta b_{i0}) + \nu_i,$$

(1)

where $\Delta y^{US}_{i1} - \Delta y^{US}_{i0}$ denotes the annualized double log-difference in the US counterpart of the dependent variable (e.g. US labour productivity in the same industry), and $\Delta b_{i1} - \Delta b_{i0}$ is the business cycle control.

For our purposes, it is important to note that Trefler controls for a large number of factors which also influence the variable of interest and might bias the estimated impact of tariff reductions. His approach is thus close in spirit to the comparative static exercises which we will perform below. That is, Trefler estimates the impact of CUSFTA-mandated tariff changes on changes in labour productivity, trade and other variables, holding all other factors constant. In our view, comparing our model’s results to Trefler’s conditional moments is better suited for an evaluation of our model than a comparison with the raw moments of the data – in the sense that it does not place an unfairly heavy burden on a relatively stylized theory.

In table 1, we first replicate Trefler’s key results on labour productivity and Canadian imports. We estimate specification (1) with data provided on Daniel Trefler’s website and compare the results to his baseline specifications (row 1 in his tables 2 and 3). As seen in columns 1 and 2, we are able to replicate Trefler’s results almost exactly. For example, Canadian tariff cuts have a strongly significant impact on domestic labour productivity in Canada. A one percentage point change in $\Delta t^{CA}_{i1} - \Delta t^{CA}_{i0}$ led, on average, to a 1.4% increase in the rate of annual labour productivity growth in 1988-1996. US tariff cuts also raised labour productivity although the estimated effect is statitically insignificant.

Trefler refines his results by calculating a weighted total effect on the third of Canadian industries facing the highest domestic tariff cuts (‘import-competing industries’) and on the third of industries which enjoyed the largest US tariff concessions (‘export-oriented industries’). He also computes the total weighted impact of CUSFTA through both US and Canadian tariff cuts.

Lines 5-7 of table 1 report the corresponding results. Canadian tariff reductions in the

4See Trefler (2004, p.876) for details of the construction of this variable. He runs sector-specific regressions of yearly log differences in the dependent variables Δy_{it} on lags of $\Delta z_t = (\Delta \ln gdp_t, \Delta \ln rer_t)$ where gdp_t and rer_t denote the Canadian GDP and real exchange rate in period t. He then uses the predictions of these regressions $(\Delta \hat{y}_{it})$ to construct $\Delta b_{i1} = \sum_{t=1989}^{1996} \Delta \hat{y}_{it}/8$ and $\Delta b_{i0} = \sum_{t=1980}^{1986} \Delta \hat{y}_{it}/6$. His business cycle control is then simply $\Delta b_{i1} - \Delta b_{i0}$.

5These are the two moments we use to evaluate our model. We are currently working on an extension to also look at predictions on employment growth.

6In all three cases, Trefler weighs industry-specific tariff cuts using 1988 sectoral data on the numerator of the dependent variable (i.e. value added for labour productivity and import and exports for the trade regressions). He also converts annual changes into a total effect for the period 1988-1996. See appendix B of Trefler (2004) for details.
most impacted, import-competing industries caused a total labour productivity increase of 0.15 log points or approximately 15% over the period 1988-1996. The effect of US tariff concession on productivity in the most impacted, export-oriented industries was much smaller at just 5%, and the total effect of CUSFTA was a productivity increase of 6%.

Column 2 shows the results from estimating (1) using Canadian imports from the US as the dependent variable. Again, Canadian tariff concessions had a large positive impact, with imports rising by 45% in the most impacted, import-competing industries and 14% overall. Surprisingly, US tariff concessions also had a positive impact on Canadian imports although the effect is smaller and less statistically significant.

In columns 3-4, we reproduce Trefler’s findings for the subset of industries which we will use in our calibration. As discussed below, data availability and theoretical considerations prevent us from using Trefler’s full sample. However, columns 3-4 show that Trefler’s results are not affected by the reduction in sample size.

Finally, in column 5 we extend Trefler’s methodology to Canadian exports to the US. As seen, US tariff concessions had the expected positive effect on Canadian exports although the effect is only marginally statistically significant (Canadian tariffs cuts had virtually no impact on Canadian exports). We estimate that lower US tariffs caused an increase in Canadian exports by 19% in the most impacted, export-oriented industries and a 2% increase overall.

To summarize, Canadian and US tariff concessions had strongly asymmetric effects on Canadian labour productivity. Labour productivity was strongly positively impacted by Canadian tariff cuts, and to a lesser extent by US tariff reductions. Lower Canadian import tariffs led to higher Canadian imports while lower US tariffs increased Canadian exports. These findings set the stage for the rest of this paper. We will investigate to what extent our version of Melitz (2003) can replicate these findings, both in terms of the signs of the estimated effects as well as their quantitative magnitude.

3 The Model

Our model is an extension of Melitz (2003) that is close to Helpman et al. (2004). We allow for many industries and asymmetries across countries. Initially we simplify the model by abstracting from its free-entry stage. However, further below we also model the free-entry stage as in the original Melitz model.

\footnote{In this sense, our model is close to Chaney (2008).}
Demand

Consumers maximise the following two-tier utility function:

\[
U = \sum_{i \in I} \mu_i \ln Q_i + A, \tag{2}
\]

where \(\Gamma_i \) represents the (endogenous) set of available varieties in manufacturing sector \(i \). \(\sigma_i \) is the elasticity of substitution between any two goods in industry \(i \). Choosing good \(A \) as the numéraire, utility maximisation on the upper level yields demand functions \(A = Y - \sum \mu_i \) and \(Q_i = \mu_i / P_i \), where \(Y \) is total expenditure per consumer. Expenditure on manufacturing goods per consumer is thus fixed at \(P_i Q_i = \mu_i \). In the manufacturing goods sector, utility maximisation yields demand and expenditure functions

\[
q_i(\gamma) = P_i(\gamma)^{-\sigma} P_i^{\sigma-1} \mu_i, \tag{4}
\]

\[
r_i(\gamma) = P_i(\gamma)^{1-\sigma} P_i^{\sigma-1} \mu_i. \tag{5}
\]

Technology and Environment

There are many countries, denoted by \(j \). All countries produce positive amounts of a freely traded numéraire good; its industry operates under perfect competition and with linear production function \(A = l_A \) everywhere, where \(l_A \) is labour employed in the numéraire industry. This implies \(w_j = 1 \) for all \(j \).

Manufacturing goods are produced using labour as the only production factor. A firm’s output \(q \) and productivity \(\gamma \) determine its ‘variable’ labour requirements \(q(\gamma) / \gamma \).\(^9\)

In order to supply goods to its own domestic market, a firm must also pay a fixed cost \(F_j \) in terms of the numéraire good. In order to export to country \(j' \), country-\(j \) firms must incur an additional fixed cost \(F_{jj'} \), also in terms of the numéraire good.\(^10\)

International trade is also subject to the standard iceberg transport cost \(\tau_{jj'} > 1 \).

In each country, there is a given large number \(M_j \) of potential entrants to an industry. The productivity parameter \(\gamma \) is revealed to firms before they pay the fixed costs and start production. In equilibrium, only those firms that can earn non-negative profits will enter a market.

\(^8\)We can think of \(Q_i \) as a final good made of a continuum of intermediates \(q_i(\gamma) \) aggregated according to the production function (3).

\(^9\)In what follows, industry and country notation is suppressed for simplicity wherever unnecessary.

\(^10\)This ensures that only firms that also produce domestically will export, which is the empirically relevant case.
Firm-level Outcomes

Each manufacturing firm has got monopoly power over the variety it produces. Since delivering goods abroad is subject to an iceberg-type transport cost, the pricing rules of country-\(j \) firms for the domestic and foreign markets are, respectively,

\[
p_j(\gamma) = \frac{\sigma}{\sigma - 1} \frac{1}{\gamma}, \tag{6}
\]

\[
p_j(\gamma) = \frac{\sigma}{\sigma - 1} \frac{\tau_{jj'}}{\gamma}. \tag{7}
\]

The firms’ associated demand levels (net of transport costs in the case of exports) are

\[
q_j(\gamma) = \left(\frac{\sigma}{\sigma - 1} \frac{1}{\gamma} \right)^{-\sigma} P_j^{p_{j-1} \mu_j}, \tag{8}
\]

\[
q_{jj'}(\gamma) = \left(\frac{\sigma}{\sigma - 1} \frac{\tau_{jj'}}{\gamma} \right)^{-\sigma} P_j^{p_{j-1} \mu_{jj'}}, \tag{9}
\]

The firm’s resulting revenues (once again, in the case of export revenues they are expressed net of transport costs) are

\[
r_j(\gamma) = \left(\frac{\sigma}{\sigma - 1} \frac{1}{\gamma} \right)^{1-\sigma} P_j^{p_{j-1} \mu_j}, \tag{10}
\]

\[
r_{jj'}(\gamma) = \left(\frac{\sigma}{\sigma - 1} \frac{\tau_{jj'}}{\gamma} \right)^{1-\sigma} P_j^{p_{j-1} \mu_{jj'}} = \tau_{jj'}^{1-\sigma} \frac{P_j^{p_{j-1} \mu_{jj'}}}{P_j^{p_{j-1} \mu_j}} r_j(\gamma). \tag{11}
\]

The profits associated with production exclusively for the domestic market and exclusively for the export market\(^{11} \) are, respectively,

\[
\pi_j(\gamma) = p_j(\gamma) q[p_j(\gamma)] - \frac{1}{\gamma} q[p_j(\gamma)] - F_j = \frac{r_j(\gamma)}{\sigma} - F_j, \tag{12}
\]

\[
\pi_{jj'}(\gamma) = \frac{r_{jj'}(\gamma)}{\sigma} - F_{jj'}. \tag{13}
\]

\(^{11}\)We allocate the start-up cost \(F_j \) to domestic-sales profits and the export cost \(F_{jj'} \) to exporting profits. This is possible since any exporter also sells domestically and thus has domestic revenue. To see this, note that the start-up cost \(F_j \) will also be incurred if a firm produced for exporting only. If \(\frac{r_{jj'}(\gamma)}{\sigma} - F_j - F_{jj'} > 0 \), this firm should also enter the domestic market, as \(\frac{r_j(\gamma)}{\sigma} > 0 \). The equivalent condition in the model is \(\tau_{jj'}^{1-1} F_{jj'} > \frac{p_{j-1} \mu_{jj'}}{p_{j-1} \mu_j} F_j, \).
Entry Thresholds

A firm with productivity \(\gamma \) will enter the domestic market if \(\pi_j(\gamma) \geq 0 \). Hence, \(\pi_j(\gamma^*_{j}) = 0 \) defines the domestic entry cutoff \(\gamma^*_{j} \):\(^{12}\)

\[
\gamma^*_{j} = \left[\frac{F_j \sigma}{\mu_j P_j^{\sigma-1}(\sigma - 1)^{\sigma-1}} \right]^{1/(\sigma-1)}.
\] (14)

Similarly, a firm will enter export market \(j' \) in addition to producing domestically if \(\pi_{jj'}(\gamma) \geq 0 \). Hence, the export cutoff \(\gamma^*_{jj'} \) is implicitly defined by \(\pi_{jj'}(\gamma^*_{jj'}) = 0 \). Using country-\(j \) firm’s export cutoff condition and country-\(j' \) firm’s domestic market entry condition, \(\pi_{jj'}(\gamma^*_{jj'}) = 0 \), we can express country-\(j' \)’s export cutoff as a function of country-\(j \)'s entry cutoff:

\[
\gamma^*_{jj'} = \left(\frac{F_{jj'} G_{jj'}}{F_{j'}} \right)^{1/(\sigma-1)} \tau_{jj'} \gamma^*_{j}.
\] (15)

The consumer price index is

\[
P_j = \left[\int_{\gamma_j}^{\gamma_j^*} p_j(\gamma) \left(M_j v_j(\gamma) \right) d\gamma + \sum_{j' \neq j} \left(\int_{\gamma_{jj'}}^{\gamma_j^*} p_{jj'}(\gamma) \left(M_{jj'} v_{jj'}(\gamma) \right) d\gamma \right) \right]^{\frac{1}{1-\sigma}}.
\] (16)

Assume \(\gamma \) is Pareto distributed: \(v(\gamma) = ak^a \gamma^{-(a+1)} \), with \(a, k > 0 \) and \(\gamma \geq k.\)\(^{13}\) Assuming the shape parameter \(a \) is equal for all countries, (14) and (16) yield

\[
\gamma^*_{j} = \left(\frac{F_j}{\mu_j} \frac{\sigma a}{a - \sigma + 1} \right)^{1/a} \left[M_j k_j^a + \sum_{j' \neq j} M_{jj'} k_{jj'}^a \tau_{jj'}^{-a} \left(\frac{F_{jj'} G_{jj'}}{F_{j'}} \right)^{\frac{\sigma - 1 - a}{\sigma - 1}} \right]^{1/a}.
\] (17)

Finally, equation (15) and (17) imply export productivity cutoff

\[
\gamma^*_{jj'} = \left(\frac{F_{jj'}}{\mu_{jj'} a - \sigma + 1} \right)^{1/a} \tau_{jj'} \left(\frac{F_{jj'} G_{jj'}}{F_{j'}} \right)^{\frac{1}{\sigma - 1}} \left[M_{jj'} k_{jj'}^a + \sum_{j'' \neq j'} M_{jj''} k_{jj''}^a \tau_{jj''}^{-a} \left(\frac{F_{jj''} G_{jj''}}{F_{j'}} \right)^{\frac{\sigma - 1 - a}{\sigma - 1}} \right]^{1/a}.
\] (18)

\(^{12}\)We assume parameter values such that the marginally profitable firm will not export:

\[
\pi_j(\gamma^*_{j}) = 0 \iff r_j(\gamma^*_{j}) = \sigma F_j.
\]

For

\[
\pi_{jj'}(\gamma^*_{jj'}) = \frac{r_{jj'}(\gamma^*_{jj'})}{\sigma} = \frac{F_{jj'} G_{jj'}}{F_{j'}} - \frac{\sigma - 1}{\sigma} \frac{P_{jj'}^{\sigma-1} \mu_{jj'} r_j(\gamma^*_{j})}{\mu_j} - F_{jj'} < 0,
\]

we need to impose \(\tau_{jj'}^{-1} F_{jj'} > \frac{P_{jj'}^{\sigma-1} \mu_{jj'} r_j(\gamma^*_{j})}{\mu_j} F_j \). Below we express \(P_j \) as a function of parameters.

\(^{13}\)For the \(n^{th} \)-moment of the distribution to exist, we need \(a > n \). We impose \(a > \sigma \) for the moments of interest for our purposes to exist.
Recall $a > \sigma$. The fixed cost F_j has a positive effect on the domestic entry threshold γ^*_j, as a higher F_j makes it harder for domestic low-productivity firms to break even. $F_{j'j}$ and $\tau_{j'j}$ affect $\gamma^*_{j'}$ negatively: the higher the cost to export into the home market, the easier it is for country-j’s low-productivity firms to survive. $F_{j'}$ has a negative effect on $\gamma^*_{j'}$: the higher this fixed cost, the easier it is for country-j’s firms to break even in country-j'’s market. Higher costs to export into the foreign market ($F_{j'j'}$ and $\tau_{j'j'}$) raise the productivity threshold $\gamma^*_{j'j}$ for country-j’s firms to break even when exporting to country j'.

Industry Aggregates

Once we have expressed the entry cutoffs as functions of the model’s parameters, it is easy to do the same for all industry aggregates. We will profit from this information in two ways. First, we will calibrate the model’s parameters by matching its moments to the available data. Secondly, once we have calibrated the model we will simulate CUSFTA and thereby will generate the model’s predictions, which we will then compare to the empirical evidence discussed above.

Price Levels

Inserting the solutions for γ^*_j and $\gamma^*_{j'}$ into the price index,

$$P_j = \frac{\sigma}{\sigma - 1} \left(\frac{\sigma F_j}{\mu_j} \right)^{-\frac{1}{\sigma - 1}} (\gamma^*_j)^{-1}. \quad (19)$$

Number of Firms

The number of active firms is given by

$$N_j = \left[1 - V_j (\gamma^*_j) \right] M_j = M_j k^a_j (\gamma^*_j)^{-a}, \quad (20)$$

where $V (\gamma)$ denotes the distribution function of γ. The number of country-j’s firms active in export market j' is

$$N_{j'j'} = \left[1 - V_j (\gamma^*_{j'j'}) \right] M_j = M_j k^a_j (\gamma^*_{j'j'})^{-a}. \quad (21)$$

Trade Flows

The f.o.b. value of exports from country j' to country j is

$$X_{j'j} = \frac{M_{j'} k^a_{j'} \tau^a_{j'j} \mu_{j'} \left(\frac{F_{j'j}}{F_j} \right)^{\frac{\sigma - 1}{\sigma - a}}}{M_j k^a_j + \sum_{j'' \neq j} M_{j''} k^a_{j''} \tau^a_{j''j} \left(\frac{F_{j''j}}{F_j} \right)^{\frac{\sigma - 1}{\sigma - a}}}. \quad (22)$$
Sales

Aggregate sales by industry are

\[
R_j = M_j k_j^a \frac{a \sigma}{a - \sigma + 1} \left[F_j (\gamma_j^*)^{-a} + \sum_{j' \neq j} \tau_{jj'}^{1-a} \left(\frac{F_{jj'}}{F_{j'}} \right)^{\frac{a-1-a}{\sigma}} F_{j'} (\gamma_{j'}^*)^{-a} \right]. \tag{23}
\]

Sales by Top Firms

Define \(\gamma_j^T > \gamma_j^*\) as the productivity level above which the productivity lies for the mass \(N_j^T\) of most productive (and therefore largest) firms:

\[
N_j^T = [1 - V_j (\gamma_j^T)] M_j = M_j k_j^a (\gamma_j^T)^{-a}. \tag{24}
\]

Hence,

\[
\gamma_j^T = \left(\frac{N_j^T}{N_j} \right)^{-\frac{1}{a}} \gamma_j^*. \tag{25}
\]

Assuming \(\gamma_j^T > \gamma_{jj'}^*\), the industry’s revenue accounted for by the top firms (which can be recovered from the concentration ratio \(C_j^T = R_j^T / R_j\)) is

\[
R_j^T = M_j k_j^a \frac{a \sigma}{a - \sigma + 1} \left(\frac{N_j^T}{N_j} \right)^{-\frac{a-1-a}{\sigma}} \left[F_d (\gamma_j^*)^{-a} + \sum_{j' \neq j} \tau_{jj'}^{2-a} F_{j'} (\gamma_{j'}^*)^{1-a} (\gamma_j^*)^{\sigma-1-a} \right]. \tag{26}
\]

Employment

Industry employment is

\[
L_j = M_j k_j^a \frac{a (\sigma - 1)}{a - \sigma + 1} \left[F_j (\gamma_j^*)^{-a} + \sum_{j' \neq j} \tau_{jj'}^{1-a} \left(\frac{F_{jj'}}{F_{j'}} \right)^{\frac{a-1-a}{\sigma}} F_{j'} (\gamma_{j'}^*)^{-a} \right]. \tag{27}
\]

Productivity

Following Melitz (2003), we define an industry’s aggregate productivity as

\[
\tilde{\gamma}^j = \left[\left(\frac{N_j}{N_j + \sum_{j' \neq j} N_{jj'}} \right) (\gamma_j^*)^{-1} + \sum_{j' \neq j} \left[\left(\frac{N_{jj'}}{N_j + \sum_{j' \neq j} N_{jj'}} \right) (\gamma_{jj'}^*)^{-1} \right] \right]^{\frac{1}{\sigma-1}}. \tag{28}
\]
where

\[
\tilde{\gamma}_j (\gamma_j^*) = \left[\frac{1}{1 - V_j(\gamma_j^*)} \int_{\gamma_j^* }^{\infty} (\gamma)^{\sigma - 1} v_j(\gamma) \, d\gamma \right]^{\frac{1}{\sigma - 1}} = \left(\frac{a}{a - \sigma + 1} \right)^{\frac{1}{\sigma - 1}} \gamma_j^*, \tag{29}
\]

\[
\tilde{\gamma}_{j'j'}(\gamma_{j'j'}^*) = \left[\frac{1}{1 - V_{j'}(\gamma_{j'j'}^*)} \int_{\gamma_{j'j'}^* }^{\infty} (\gamma)^{\sigma - 1} v_{j'}(\gamma) \, d\gamma \right]^{\frac{1}{\sigma - 1}} = \left(\frac{a}{a - \sigma + 1} \right)^{\frac{1}{\sigma - 1}} \gamma_{j'j'}^*. \tag{30}
\]

As further explained below, our calibration will not enable us to identify the level of \(\gamma_j \), but only its growth rate - which is all we need to compare the model’s predictions to Treffer’s results.

Alternatively, we will work with a definition of productivity in which we simply aggregate firms’ outputs linearly:

\[
\frac{\tilde{Q}_j}{L_j} = \frac{1}{L_j} \left[\int_{\gamma_j^* }^{\infty} q_j M_j v_j(\gamma) \, d\gamma + \sum_{j' \neq j} \int_{\gamma_{j'j'}^* }^{\infty} \tau_{j'j'} q_{j'j'} M_j v_j(\gamma) \, d\gamma \right] = \frac{M_j k_j^a}{L_j} \left[a(\sigma - 1) \left(F_j(\gamma_j^*)^{1 - a} + \sum_{j' \neq j} \tau_{j'j'}^{1 - a} \left(\frac{F_{j'}(\gamma_{j'j'}^*)}{F_j(\gamma_j^*)} \right)^{\frac{\sigma - 1}{\sigma - 2}} F_{j'}(\gamma_{j'j'}^*)^{1 - a} \right) \right]. \tag{31}
\]

Again, we will work with the growth rate rather than the level of \(\tilde{Q}_j/L_j \). One advantage of this alternative productivity growth measure is that it is much closer to its empirical counterpart in Treffer who uses the growth rate in deflated industry sales divided by the growth rate in labour inputs to calculate (labour) productivity growth.\(^{14}\)

4 Model Evaluation - Qualitative Predictions

We now turn to an evaluation of the success of our version of Melitz (2003) in replicating the qualitative and quantitative features of Treffer’s results, as presented in section 2. In this section, we start by performing comparative statics exercises to check whether our model correctly predicts the signs of the effects of trade liberalization on aggregate productivity and trade flows.

In line with our notation, we denote Canadian variables by subscript \(j \) and US variables by subscript \(j' \) in the following propositions. In our model, we interpret a trade

\(^{14}\)Treffer (2004) and a large empirical literature before him use industry-level price deflators to convert changes in nominal values of industry revenues into quantity changes. That is, they measure changes in \(\left(\sum p_{it} q_{it} / \sum l_{it} \right) P_t^{-1} \) where \(p_{it} \), \(q_{it} \) and \(l_{it} \) are establishment-level prices, quantities and labour inputs, and \(P_t \) is the sectoral price index in period \(t \). If changes in \(P_t \) adequately capture price changes at the firm-level (which is the maintained assumption in this literature), then

\[
\left(\frac{\sum p_{it} q_{it}}{\sum p_{it-1} q_{it-1}} \right) \times \left(P_t/P_{t-1} \right)^{-1}
\]

\[
= \left(\frac{\sum q_{it}}{\sum q_{it-1}} \right) \text{ which is what our measure captures.}
\]
liberalization as a reduction in the iceberg transport cost τ. Since the main instrument of liberalization under CUSFTA were bilateral reductions in ad-valorem tariffs, this theoretical interpretation fits well with the actual liberalization experience.

Proposition 1 Reductions of Canadian import tariffs (lower $\tau_{j'j}$) raise aggregate productivity in Canada (higher $\bar{\gamma}_j$).

Proof. First, from (20) and (17) it is easy to see that $\partial N_j/\partial \tau_{j'j} > 0$, since $\partial \gamma_j^*/\partial \tau_{j'j} < 0$. Intuitively, more domestic protection makes it easier for domestic low-productivity firms to survive. Secondly, from (28), $\bar{\gamma}_j$ is a weighted average of $\bar{\gamma}_j$ and $\bar{\gamma}_{j'j'}$, with $\bar{\gamma}_j < \bar{\gamma}_{j'j'}$. More domestic protection reduces γ_j^* and thus $\bar{\gamma}_j$; besides, N_j rises, raising the weight of $\bar{\gamma}_j$. ($\gamma_j^*, \bar{\gamma}_{j'j'}$ and $N_{j'j'}$ remain constant.) Hence the average $\bar{\gamma}_j$ falls with more domestic protection: $\partial \bar{\gamma}_j/\partial \tau_{j'j} < 0.$

Proposition 2 Reductions of US import tariffs (lower $\tau_{j'j}$) have an ambiguous effect on Canadian productivity.

Proof. More foreign protection reduces the number of domestic exporters $N_{j'j'}$: from (21) and (18), $\partial N_{j'j'}/\partial \tau_{j'j'} < 0$ since $\partial \gamma_{j'j'}^*/\partial \tau_{j'j'} > 0$. This effect has got a negative impact on $\bar{\gamma}_j$, as the weight on the high component $\bar{\gamma}_{j'j'}$ of average productivity falls. On the other hand, average exporter productivity $\bar{\gamma}_{j'j'}$ rises through the increase in $\gamma_{j'j'}^*$. ($\gamma_j^*, \bar{\gamma}_j$ and N_j remain constant.) Whether the overall effect is positive or negative depends on parameter values, as discussed in appendix A.

Our model thus correctly predicts that reductions in Canadian import tariffs raise aggregate productivity in Canada. It also predicts that the same need not hold true for reductions in US import tariffs. Intuitively, lower foreign barriers mean that existing exporters (which are the most productive firms) gain market share. However, there is also export market entry by less productive firms which also expand output. The overall effect on aggregate productivity is thus ambiguous. This is again consistent with Trefler’s result of a positive but relatively small (compared to Canadian tariff concession) and statistically insignificant impact of US tariff reductions. Interestingly, one of the explanations advanced by Trefler for this finding is that US tariff cuts encouraged export market entry by less productive Canadian firms which partly offset the gains arising from market share expansions of existing exporters. This is exactly what is underlying our ambiguity result.

Proposition 3 Reductions of Canadian import tariffs (lower $\tau_{j'j}$) raise Canadian imports from the US but have no effect on Canadian exports to the US. US import tariff reductions (lower $\tau_{j'j}$) increase Canadian exports to the US but have no effect on Canadian imports from the US.
Proof. From (22), we obtain that $\partial X_{j'j}/\partial \tau_{j'j} < 0$ and $\partial X_{j'j}/\partial \tau_{j'j} = 0$. Similarly, inverting the ordering of subscripts j and j' in (22) demonstrates that $\partial X_{jj'}/\partial \tau_{jj'} < 0$ and $\partial X_{jj'}/\partial \tau_{jj'} = 0$.

Thus, our model replicates Trefler’s finding that reductions in Canadian tariffs raise imports from the US, and that US tariff concessions cause Canadian exports to the US to increase. Recall from section 2 that Trefler also finds that the impact of Canadian tariff reductions on Canadian exports to the US is much smaller and less statistically significant than the effect of US tariff reductions (the same holds also true for US exports to Canada although the coefficients magnitudes are more similar in this case). This is again consistent with our model’s prediction on the relative importance of domestic and foreign tariff concessions on trade flows.

5 Model Evaluation - Quantitative Predictions

The last section demonstrated that our version of Melitz (2003) is capable of replicating the qualitative results of Trefler (2004). We now raise the bar further by evaluating whether our model can also replicate Trefler’s findings quantitatively. To this end, we calibrate the model’s parameters on pre-liberalization data. We then simulate the fall in tariff barriers implied by CUSFTA, holding all other parameters equal. For this, it is useful to think of transport cost $\tau_{jj'}$ as having a ‘natural’ component, $\alpha_{jj'}$, and a ‘policy-induced’ component, $t_{jj'}$: $\tau_{jj'} = 1 + \alpha_{jj'} + t_{jj'}$. We simply let $t_{jj'}$ fall as observed in CUSFTA, and compute the resulting changes in productivity and trade flows.

To simplify this exercise, and for reasons of data availability, we start with a two-country version of our model, including Canada and the US only. We denote these countries by subscripts d (for ‘domestic’, i.e. Canada) and f (‘foreign’, i.e. the US). Initially, we also set $\alpha_{jj'} = 0$. In robustness checks reported below, we introduce a third country (the ‘Rest of the World’, consisting of Germany, Japan and the United Kingdom) and allow for a positive ‘natural’ components of trade costs.

We reduce the number of parameters to be calibrated in several ways. First, the parameters M_j and k_j^n (number of potential entrants and the Pareto distribution parameter, respectively) cannot be identified separately but only as their product, $K_j = M_jk_j^n$. More-

15The fact that we predict no effect of domestic tariff concessions on domestic export is of course an artifact of our abstraction from the relevant general equilibrium effects. We thus regard the comparison of relative effects of domestic and foreign tariff concessions as more informative. However, in section 3 we show that running Trefler’s regressions on a dataset generated by our model actually does yield positive effects of US tariff cuts on Canadian imports. (This is because Trefler imposes a particular functional form in his regressions).

16In a recent paper, Broda and Weinstein (2008) compare Canadian and US barcode data for the period 2001-2003, and find that the law of one price holds equally well for city pairs of the same country and for city pairs with cities on different sides of the Canada-US border. Since we implicitly normalize intranational trade costs to one, this result suggests that assuming no international trade costs in the post-liberalization phase is not implausible a priori.
over, K_j itself cancels out quite frequently from the expressions above.\(^{17}\) Still, we can identify the ratios $K_{j’}/K_j$, with which we can compute the growth rates of productivity and bilateral trade flows.\(^{18}\)

Finally, we have direct proxies from the data for parameters $t_{jj’}$ (ad-valorem tariffs) and μ_j (industry-level expenditures). In the two-country model, we are thus left with 7 parameters which need to be estimated for each industry: the shape parameter of the Pareto distribution a; the elasticity of substitution σ; two domestic fixed costs (F_d and F_f); two foreign export fixed costs (F_{df} and F_{fd}); and one ratio K_f/K_d.

Calibration Strategy

We proceed in two stages. First, we obtain estimates for a and σ from firm- and industry-level data. This leaves us with a system of five parameters and five moments: number of firms (2), bilateral trade flows (2), and one Canadian concentration ratio. We show in appendix B that the implied system of non-linear equations can be solved for a unique set of positive parameter values. Thus, our model is able to match the pre-liberalization empirical moments exactly.\(^{19}\)

Parameters a and σ

Total sales by exporting firms can be expressed as $r(\gamma) = r_j(\gamma) + \sum_{j’ \neq j} r_{jj’}(\gamma) = \Lambda_1 \gamma^{\sigma - 1}$, which is proportional to $\gamma^{\sigma - 1}$ (the term Λ_1 is constant across firms). Since γ is distributed Pareto with shape parameter a, sales are distributed Pareto with shape parameter $a_r = a/(\sigma - 1)$ and cutoff $k_r = \Lambda_1 k^{\sigma - 1}$. Thus, we can estimate a_r and σ, and then recover a.

\(^{17}\)Notice that the entry cutoff γ_j^* can be rewritten as

$$
\gamma_j^* = (K_j)^{1/a} \left(\frac{F_j}{\mu_j a - \sigma + 1} \right)^{1/a} \left[1 + \sum_{j’ \neq j} \frac{K_{j’}}{K_j} \frac{\tau_{jj’}}{\tau_j} \left(\frac{F_{jj’}}{F_j} \right)^{\frac{a - 1}{a}} \right]^{1/a}.
$$

The term $(K_j)^{1/a}$ cancels out in most of our expressions with the exception of the price level P_j, for which we do not have data.

\(^{18}\)This discussion obviously assumes that we can treat the number of potential entrants as a constant parameter, which might be fine in the short run, but more controversial for the long run. We address this issue below: once again, we cannot identify K_j in the post-trade liberalization steady state, but we can compute its steady-state change, which is all we need to compute the long-run growth rates of our variables of interest.

\(^{19}\)We focus on an exactly identified system in the initial calibration stage since we are primarily interested in evaluating the out-of-sample predictions of our model rather than the consistency of the model with the pre-liberalization data. Using other moments for which we have data (employment, additional concentration ratios) does not alter the qualitative nature of the findings below.
Obtaining a_r from Sales Data Aggregate sales for firms with sales equal or larger sales than r_x are (assuming $a_r > 1$):

$$R_{rx} = \int_{r_x}^{\infty} rv(r)dr = \frac{a_r k_r a_r}{a_r - 1} (r_x)^{1-a_r}. \quad (33)$$

Take the sales value r_x that corresponds to the x-th largest firm. The fraction n_{rx} of firms that are bigger than or equal to this firm is $n_{rx} = 1 - V(r_x)$. Hence, $r_x = k_r n_{rx}^{-1/(a_r)}$.

Taking the ratio with the y-th largest firm’s sales eliminates k_r: $\frac{r_x}{r_y} = \left(\frac{n_{ry}}{n_{rx}} \right)^{1/a_r}$. We do not have data on r_x, but we know the sales volume R_{rx} defined above (total shipments times the concentration ratio):

$$\left(\frac{R_{rx}}{R_{ry}} \right)^{1/(1-a_r)} = \left(\frac{n_{ry}}{n_{rx}} \right)^{1/a_r}. \quad (34)$$

Solving for a_r,

$$a_r = \frac{\ln n_{ry} - \ln n_{rx}}{\ln R_{rx} - \ln R_{ry} + \ln n_{ry} - \ln n_{rx}}. \quad (35)$$

If firm x is larger than firm y, we have $n_{ry} > n_{rx}$ and $R_{ry} > R_{rx}$. Thus, $a_r > 1$ from above as long as $(\ln R_{rx} - \ln R_{ry}) + (\ln n_{ry} - \ln n_{rx}) > 0$, which holds by construction.20

Obtaining of σ from Firm-level Data Operating profits (that is, profits net of fixed costs) are

$$\pi^o(\gamma) = \frac{r(\gamma)}{\sigma}. \quad (36)$$

Since we have data on operating profits and revenue for US and Canadian firms, we can obtain estimates of σ from the above expression separately for each firm. Our industry-specific estimate of σ is simply the median across all firms within in an industry.

Data Description

For our calibration we require sector-level data on output, trade flows, tariffs, the number of firms and concentration ratios. We also need firm-level information on operating profits and sales for the calibration of σ.

Most of our data on output, tariffs and trade flows come from Trefler (2004).21 For

20This condition holds iff

$$\ln R_{ry} - \ln R_{rx} < \ln n_{ry} - \ln n_{rx} \iff \frac{R_{rx}}{R_{ry}} < \frac{n_{rx}}{n_{ry}}.$$ That is, the sales ratio is smaller than the rank ratio. *E.g.*, if we take the four and the eight firm concentration ratios, we must have $\frac{R_{top8}}{R_{top4}} < 2$, which is true by construction.

21These data are available on Daniel Trefler’s website at http://www.rotman.utoronto.ca/~dtrefler/. Trefler’s original sources are special tabulations by Statistics Canada and the NBER Manufacturing Productivity Database. See Trefler (2004) for a detailed description.
the three-country version of our model, we complement these data with information on sectoral-level output for Germany, Japan and the UK from UNIDO’s Industrial Statistics Database, and with information on US exports and imports from the NBER. We use gross output in Canadian, US and RoW manufacturing industries as proxies for R_d, R_f, and R_w (where w denotes ‘Rest of the World’). As proxies for X_{df}, X_{fd}, X_{dw}, X_{wd}, X_{fw}, and X_{wf}, we use sectoral-level trade flows between the three countries. We also use these data to calculate μ_d, μ_f and μ_w as industry-level absorption, e.g. $\mu_d = R_d + (X_{fd} + X_{wd} - X_{df} - X_{dw})$.

Trefler also provides data on Canadian and US import tariffs which we use as proxies for t_{fd} and t_{df}. We convert all data to the 4-digit level of the Canadian Standard Industrial Classification of 1980. Value data are expressed in 1992 Canadian dollars using the US-Canadian Dollar exchange rate and 4-digit industry price and value added deflators. To ensure compatibility with our choice of numéraire, we further normalize all value data by Canadian industry-level wages, proxied by total annual earnings per worker. Data on exchange rates, deflators and wages are also from Trefler (2004).

Secondly, we use information from Statistics Canada, the US Census Bureau and UNIDO on the number of enterprises as proxies for N_d, N_f and N_w. Statistics Canada also provides the output share accounted for by the top 4, 8, 12, 16, 20, and 50 enterprises in each 4-digit Canadian industry. Multiplying these shares with total industry output (R_d) we obtain the total output of the top 4, 8, etc. enterprises which we use as proxies for R_{ra}.

Finally, the computation of σ requires data on operating profits (π^o) and sales (r) at the firm-level. We obtain these from Compustat North America and Compustat Global. We proxy π^o as operating income before depreciation and r as net sales.

Parameter Estimates

Table 2 presents descriptive statistics on the parameter estimates. We estimate a different set of parameter values for each manufacturing industry in our sample. Availability of concentration ratios and trade data reduces the number of industries from 213 in Trefler to 195 in our analysis. We furthermore drop 12 additional sectors which violate parameter restrictions of our model, leaving us with 183 sectors in total.

For most parameters there are no easily comparable estimates from other sources. An exception is σ, which is of the same order of magnitude as estimates at similar
aggregation levels (e.g. Broda and Weinstein, 2006a/b). The median parameter values also seem mostly plausible. For example, recalling that we normalized all value terms by Canadian sectoral wages, the estimates for \(F_d \) and \(F_f \) indicate that the median cost for Canadian and U.S. manufacturing firms of entering their domestic market was around 327,000 and 505,000 Canadian dollars in 1988, respectively.

While our model thus produces broadly reasonable parameter estimates, the minimum and maximum values reported in table 2 indicate that there are also a number of outliers, however. In the robustness checks reported below, we experiment with excluding such sectors insofar as they produce extreme growth rates for productivity or exports which could drive our results.

Baseline Results

In this section we simulate the tariff cuts of CUSFTA (that is, a reduction in trade cost parameters \(\tau_{df} \) and \(\tau_{fd} \), holding all other parameters constant), and compare the productivity gains and increases in trade flows predicted by the model with the estimates reported in table 1, columns 3-5.

Recall that we defined trade costs as \(\tau_{jj'} = 1 + \alpha_{jj'} + t_{jj'} \), where \(\alpha_{jj'} \) are natural trade costs and \(t_{jj'} \) are policy-induced barriers (tariffs). For example, in 1988 the poultry products industry (SIC 1012) had Canadian and US import tariffs of 6.6\% and 3.7\%, respectively. For our baseline results, we also assume that \(\alpha_{fd} = \alpha_{df} = 0 \). We thus set \(\tau_{fd,t-1} = 1.066 \) and \(\tau_{df,t-1} = 1.037 \). Since CUSFTA was a free-trade agreement, we simulate the trade liberalization by setting \(\tau_{df,t} \) and \(\tau_{fd,t} \) to one.

We compute the growth rates of productivity and trade flows discussed above for each industry separately by using our calibrated parameter values, and \(\tau_{fd,t-1}, \tau_{df,t-1}, \tau_{df,t} \) and \(\tau_{fd,t} \). We first do so separately for each of the tariffs and then for both of them together. These simulations correspond to the three comparative statics results implicit in Treffer’s regressions - the effect of Canadian tariffs (corresponding to \(\beta^{CA}_t \)), the effect of US tariffs (corresponding to \(\beta^{US}_t \)), and their joint impact.

Thus, we obtain a set of three simulation results for each of our measures of productivity and for import and export growth. Table 3 present the results of these baseline simulations. For comparison with Treffer’s results, we report weighted averages of our sector-specific simulation results. Specifically, we calculate a weighted average for the most impacted, import-competing third of industries when performing the simulation corresponding to a unilateral Canadian liberalization (reducing \(t_{fd} \) to zero). When simulating the reduction in \(td_f \) (unilateral US liberalization), we similarly use a weighted average of results for the most impacted, export-oriented third of industries. Finally, for the bilateral liberalization simulation (both \(td_f \) and \(t_{fd} \) set to zero), we compute a
weighted average across all sectors. The first line in table 3 is thus comparable to line 5 in table 1 (‘Impact on most impacted, import competing industries’). Depending on the productivity measure we use, we predict up to a quarter (3.9%) of the 16% overall increase estimated earlier. Our model also underestimates the predicted effects of US tariff reductions (line 2). Whereas we estimated an increase of 5% in table 1, our simulations predict an increase by at most 2.1%. More importantly, however, our simulation results capture the key stylised fact about the asymmetric effect of tariff reductions on productivity. Canadian tariff reductions led to a much bigger increase in aggregate productivity than US tariffs. Again, the reason this happens in our simulation is that lower US import tariffs encourage entry by less efficient exporting firms.

As mentioned before, our model matches the broad qualitative pattern of predicted changes in Canadian imports and exports from and to the US. The results in table 1 show that Canadian imports in the most impacted, import-competing third of industries increased by 47% in response to Canadian tariff cuts, and by 24% in response to US tariff cuts in the most impacted, export-oriented industries. We predict a positive impact of Canadian tariff reductions and no effect of US tariff reductions, so the ordering of magnitudes is similar. With regards to quantitative accuracy our model does less well. We predict an increase of 382% for the response of Canadian imports with respect to domestic tariffs which is roughly eight times larger than the 47% estimated earlier. As said, our model predicts no increase in response to US tariff reductions so we are again some way off the 24% increase estimated in section 2. In terms of the CUSFTA’s total effect our model again overpredicts although not as badly as for the unilateral Canadian liberalization (we predict a 50% increase versus a 14% increase in Treffler’s results).

Our model also overpredicts the increase in Canadian exports to the US in response to trade liberalization (table 3, column 4). We predict a weighted average increase of 380% in response to US tariff cuts and no increase in response to Canadian tariff cuts. The corresponding estimation results from section 2 are 19% and -9%. We also overpredict the overall effect by an order of magnitude (35% vs. 2%).

To summarize, our simulation results again confirm that our version of Melitz (2003) matches the qualitative findings of Treffler’s analysis quite well. Our model does somewhat less well on the quantitative aspects. It systematically underestimates productivity gains and overestimates increases in trade flows. In the following sections, we investigate how

25 Following Treffler (2004), we use value added and trade flows per industry in 1988 to weigh our sector-specific simulation results for trade and productivity increases. (compare footnote 5). That is, we calculate $\sum_{i \in I} \hat{y}_i \pi_i$, where \hat{y}_i is the simulation forecast for sector i and π_i the share of i in total exports, imports or value added in the group of industries I (import-competing industries, export-oriented industries or all industries).

26 An additional reason is that US tariff cuts are on average only half as large as Canadian tariff cuts. However, this does not explain the negative growth rates we obtain for some industries when we simulate a US unilateral trade liberalization.
robust these patterns are to variations in our simulation design.

Robustness Checks

Outliers

For some sectors, our model can only match the pre-liberalization moments with extreme values for parameters (see table 2). This is a source of concern insofar as it might generate outliers in predicted trade flow and productivity changes.

Table 4 thus presents results for the same simulations as in table 4, but this time excludes sectors with either very low or very high growth rates for each of our four variables of interest. Variable by variable, we first exclude the top and bottom 1% of sectors and then the top and bottom 5%.

Removing outliers does indeed reduce the predicted increase in trade flows by up to half, but this still leaves us considerably above Treffer’s estimates. At the same time, the predicted productivity increases drop as well, taking us even further away from the results in table 1.

Regression-based Approach

Treffer estimates the reported effects of CUSFTA on trade and productivity assuming a specific functional form for tariffs reductions (his estimates are semi-elasticities). In this section, we ask how his results would look like if we estimated a specification motivated by (1) on our simulated data. Of course, our model abstracts from both pre-CUSFTA trends in the data and other confounding factors which Treffer tries to control for through differencing and his control variables. We thus estimate a reduced version of (1):

$$\Delta y_i = \ln y_{i1} - \ln y_{i0} = \beta_0 + \beta_{alt}^{CA} \Delta t_{i}^{CA} + \beta_{alt}^{US} \Delta t_{i}^{US},$$

(37)

where y_{i0} and y_{i1} are the predictions of our model for productivity and trade flows for the pre- and post-liberalization setting, respectively. $\Delta t_{i}^{CA} = t_{i1}^{CA} - t_{i0}^{CA}$ and $\Delta t_{i}^{US} = t_{i1}^{US} - t_{i0}^{US}$ are the CUSFTA-mandated tariff cuts which we also used in our simulations.

Since Treffer’s data were of course generated by a bilateral trade liberalization, we also generate the data for the estimation of (37) by setting both US and Canadian tariffs to zero in our simulations. Once we have obtained estimates of β_{alt}^{CA} and β_{alt}^{US}, we calculate the same magnitudes reported in table 1, using the same approach as Treffer (i.e., the impact on the most-impacted, import-competing industries, the impact on the most-impacted, export-oriented industries, and the total impact of CUSFTA).

As shown in table 5, using this alternative approach brings our results closer to Treffer’s estimates along some dimensions but not along others. The effect of Canadian reductions on aggregate productivity is comparable to the one above, but we estimate a
slightly weaker overall reaction. On the other hand, we now do better on the predictions on trade flows. We predict a 105% increase in Canadian exports in response to US tariff reductions and a 138% increase in Canadian imports in response to Canadian tariff cuts (compared to 19% and 47% in our estimations reported in table 1, respectively). Also note that this alternative approach generates predicted increases in imports and exports in response to US and Canadian tariff reduction, respectively.

Long-run Results

So far we have abstracted from firm entry by holding fixed the number of potential entrants, M_d and M_f, during our simulation of CUSFTA. Our results up to now are thus best thought of as a short-run response to trade liberalization. We think that this corresponds best to Trefler’s study, which covers a period of eight years after CUSFTA. However, since any definition of short vs. long run is somewhat arbitrary, we also analyse the long-run responses predicted by our model.

To do so, we first extend our theoretical framework to include free entry and then repeat the same simulations as above. Consider thus the following free-entry condition for country j:

$$[1 - V (\gamma_j)] \frac{\Pi_j}{N_j} = \delta_j F_{je},$$

where Π_j denotes country-j industry’s aggregate profits; δ_j is country j’s discount rate; and F_{je} is the fixed cost (in terms of the numéraire) that a firm has to pay to pick a draw from the productivity distribution. Appendix C demonstrates how (38) can be used to solve for long-run changes in the parameters K_j and calculates the corresponding long-run growth rates of trade and productivity. Table 6 presents the corresponding results.

The key change in the long run is that the number of potential entrants, M_j, adjusts. Specifically, a unilateral Canadian liberalization reduces M_d as operating profits are reduced through the effect of higher imports on the price level. At the same time, lower Canadian tariffs increase M_f as US exporters can now make additional profits on the Canadian market. These changes lead to similar adjustments in the number of exporters in each country, and explain why we now observe a stronger increase in US exports than in the short-run, and a decrease in Canadian exports in response to lower Canadian tariffs. The impact on productivity is ambiguous, however. Fewer Canadian firms imply a lower cutoff on the domestic market in the long run, but the entry of US firms potentially counterbalances this effect (see expression (17)). In our simulations, we observe a stronger increase in our theory-based productivity, \tilde{d}, but a lower increase in

\(^{27}\) In Melitz (2003), δ is the exogenous probability of suffering a bad shock forcing exit that an active firm faces in every period. This interpretation is obviously fine here as well.

\(^{28}\) More precisely, we only identify changes in $K_j = M_j k_j^a$. Assuming that k_j^a stays constant, changes in K_j capture changes in the number of entrants.
\(Q_d/L_d \) as compared to the long run.\(^{29}\)

A unilateral US liberalization has the opposite effects on \(M_d \) and \(M_f \) - more Canadian and less US entrants. Accordingly, the effect on trade flows mirrors the one of Canadian tariff reductions. For productivity, however, the observed increases are much stronger than in the short run. The productivity-decreasing entry of less efficient exporters still takes place. But now this is accompanied by an increase in the domestic productivity cutoff \(\gamma_d^* \) due to to increased entry. This effect is also the main driver of the additional productivity gains of bilateral liberalization in the long run over and above its short-run impact (now predicted to be 3-4% rather than 1-2% as in the short run).

Despite these changes, however, the overall picture remains the same. While our long-run results yield higher productivity increases, they remain well below Trefler’s estimates, especially in the case of unilateral Canadian tariff cuts. The predictions for exports and imports are also still much higher than what Trefler finds.

Three Countries

We conclude our robustness checks by extending our baseline model in two ways. First, we calibrate a three-country version but still stick to our earlier assumption of no natural trade barriers. We then allow for positive natural trade barriers in a way consistent with the pre-liberalization stage of our model. These changes require a recalibration of our model to obtain values for the various additional parameters. Appendix B describes this procedure in more detail. Here, we focus on a discussion of our results.

Table 7 shows predictions for the three-country model without natural trade barriers. The predicted productivity gains are now smaller than in our baseline simulations. Intuitively, the existence of a third country with which Canada does not liberalize trade implies that the change relative to the initial situation is less dramatic. On the other hand, trade increases by more as standard trade diversion effects compound the trade creation effect from the two-country model. That is, Canada and the US now obtain a larger fraction of their overall imports from each other, rather than from the rest of the world.

Allowing for multiple countries thus makes it more difficult to reconcile our simulation results with Trefler’s findings. This is also true when we allow for natural variable trade barriers (table 8). Again, the predicted productivity increases are much smaller than what Trefler estimated, while predicted trade growth is too high.

\(^{29}\)In any case, the long-run effect of a unilateral liberalization on the liberalizing country’s productivity cutoff is positive in our simulations. This stands in contrast with the results in Melitz and Ottaviano (2008), where the short-run increase in the cutoff is wiped out completely in the long run.
6 Reconciling Theory and Evidence

At first sight, the fact that our model underpredicts productivity growth but overpredicts trade growth makes the task of reconciling theory and evidence difficult. This is because productivity and trade are closely linked. Intuitively, any change to the model which increases aggregate productivity will also raise aggregate sales and thus exports, improving the model’s performance on one dimension but making it worth on another.

There is a simple and natural way of overcoming these difficulties, however. So far, we have only allowed the parameters \(\tau_{jj'} \) and \(\tau_{j'j} \) to change with trade liberalization. But Trefler (2004) estimates that CUSFTA had a substantial impact of firm-level productivity as well. That is, aggregate productivity increased not only through the reallocation of market shares, but also because individual firms became more productive. The most natural way to capture such changes into our model is to allow the parameters governing the productivity distributions of potential entrants \((a, k_d \text{ and } k_f) \) to vary with trade liberalization. As it turns out, incorporating this simple and empirically relevant change goes a long way in reconciling theory and evidence.

We proceed in two steps. We first show that changes in the parameters governing the productivity distribution of potential entrants can be chosen to exactly match aggregate changes in productivity and trade. We then verify how reasonable our estimates are by analysing the implied changes in the productivity distribution of active firms - which is observable.

In practice, it is easier to work with functions of \(a, k_d \text{ and } k_f \). Specifically, we calibrate changes in \(a, K_f/K_d \) and \(K_{d}^{1/a} \) to match changes in aggregate productivity and trade flows.\(^{30}\) Technically, this is a system of three non-linear equations in three unknows. Appendix D shows that this system has a unique solution and that we can thus match aggregate trade and productivity growth rates exactly.

Table 9 reports the resulting parameter values for changes in \(a, K_f/K_d \) and \(K_{d}^{1/a} \). As we can see, \(K_{d}^{1/a} \) increased for the majority of industries, with a median increase of 0.4-4.6%, depending on the type of liberalization and the productivity measure we try to fit. Since \(K_d = M_d k_d^a \), this is best interpreted as approximating the average increase in the productivity cutoff of potential entrants \((k_d) \), keeping their numbers \((M_d) \) fixed.\(^{31}\)

Not surprisingly then, matching aggregate productivity gains requires potential entrants to become more productive.

But what about trade flows? First note that a higher \(k_d \) also implies less imports.

\(^{30}\)Recall that \(K_j = M_j k_j^a \). Assuming a constant \(M_j \), changes in \(a, K_f/K_d \) and \(K_{d}^{1/a} \) are uniquely determined by changes in \(a, k_d \) and \(k_f \).

\(^{31}\)Note that changes in \(K_{d}^{1/a} = M_d^{1/a} k_d \) capture increases in \(a \) as well, even with \(M_d \) unchanged. In unreported results, we show that \(a \) increased for the vast majority of sectors, as well as on average and for the median sector (which is reported in table 9). Thus, in most cases the reported figure for \(K_{d}^{1/a} \) is a lower bound for the increase in \(k_d \).
as domestic firms get more productive and the domestic price index declines (see (19)). Secondly, looking across the columns of table 9, we see that the change in a is also positive for the majority of sectors. A higher a implies more dispersion in the productivity of potential entrants and thus a larger mass of low-productivity firms. Since low-productivity firms are less likely to be exporters, this tends to decrease exports from both Canada and the United States.\footnote{Formally, exports will decline if $k_j < \tau_{jj'} \left(\frac{F_{j0}}{F_{j'}} \right)^{\frac{1}{a-1}}$, i.e. if trade costs are high relative to the minimum level of productivity of potential entrants.} Finally, the ratio of K_f/K_d increases in the case of the unilateral US liberalization, and decreases for the unilateral Canadian liberalization. A lower K_f/K_d can be interpreted as a stronger increase in the productivity cutoff of potential entrants on the Canadian side than on the US side (and similarly, a higher K_f/K_d implies a stronger increase on the US side). The effect of these changes is to further lower US exports (in the case of lower K_f/K_d) or Canadian exports (higher K_f/K_d).\footnote{Note that we cannot directly infer changes in k_f from our parameter estimates. But below we show that the combined change in parameters a, K_f/K_d and $K_d^{1/a}$ resulted in an increase in the cutoff of the productivity distribution of active US firms in all three scenarios, which reduced Canadian exports.}

How reasonable are these changes in parameter values? We provide two pieces of evidence based on the implied changes in the productivity distribution of active firms - which is observable. First, we ask whether there is evidence for the qualitative pattern of these changes. Second, we ask what firm-level productivity gains our model predicts and compare them to Treﬂer’s estimates.

Note that the productivity distribution of active firms in country j is given by:

$$f_j(\gamma) = \frac{v_j(\gamma)}{1 - V_j(\gamma_j^a)} = \frac{a k_d^a \gamma^{-(a+1)}}{k_j^a \gamma_j^a - a \gamma^{-(a+1)} \gamma_j^a}$$

That is, the productivity of active firms is also distributed Pareto, with shape parameter a and cutoff γ_j^a. Further recall that

$$\gamma_j^a = \left(\frac{F_j}{\mu_j} a - \sigma + 1 \right)^{1/a} \left[K_j + K_{j'}^{\tau_{jj'}} \left(\frac{F_{j'}}{F_j} \right)^{\frac{1}{\sigma-1}} \right]^{1/a}$$

Changes in a, K_f/K_d and $K_d^{1/a}$ thus directly map into changes in the shape parameter and cutoff of the distribution of active Canadian and US firms.\footnote{Note that we do not require $K_f^{1/a}$ to calculate the foreign cutoff as we can write $\gamma_f^a = K_d^{1/a} \left(\frac{F_f}{\mu_f} a - \sigma + 1 \right)^{1/a} \left[K_d^{\tau_{fj'}} \left(\frac{F_{j'}}{F_j} \right)^{\frac{1}{\sigma-1}} \right]^{1/a}$.
productivity, and decreases for those with initially high productivity. From table 9, both effects are present in all three liberalization scenarios. This again clarifies how increases in firm-level productivity can produce both higher aggregate productivity growth and lower growth in exports and imports. Having more productive firms in both markets implies lower domestic price indices and thus higher domestic cutoffs, higher export cutoffs and thus lower exports from both countries. Together with the increase in the dispersion parameter a, this effect outweighs the increase in exports triggered by the higher productivity of the remaining exporting firms.

Figure 1 further visualizes the role played by a and γ_{f} in the overall shifts in the firm-level productivity distribution. Its three panels show changes in the distribution implied by changing a only, changing γ_{d} only, and changing both a and γ_{d}. We use the median values of parameter changes reported in table 9 in response to a bilateral trade liberalization which best captures the overall qualitative patterns. We also focus on changes in the Canadian productivity distribution only (the picture for the US is qualitatively similar, although changes are smaller). As shown, the rightward shift in the distribution implied by γ_{d} dominates the increased dispersion.

We are not aware of any direct evidence on changes in the shape of the productivity distribution after trade liberalization. Nocke and Yeaple (2006) report estimates that are suggestive of a flattening of the firm-level rank-size distribution with lower trade costs which is supportive of our required increase in productivity dispersion. More generally, our findings are consistent with a more pronounced catch-up of low-productivity firms which manage to survive a liberalization of import tariffs. Since there is more scope for productivity enhancing measures at such firms, this strikes us as a priori not implausible.

What about the magnitude of the rightward shift in the productivity distribution of active firms? Here we are on somewhat firmer ground as we can use Trefler’s estimates of average productivity to judge the reasonableness of our estimates. Theoretically, the increase in the average productivity of surviving firms (which Trefler estimates) is given by:

$$\frac{E(\gamma_{t}|\gamma_{t} > \gamma_{d,t})}{E(\gamma_{t-1}|\gamma_{t-1} > \gamma_{d,t-1})} = \frac{a_{t} (a_{t} - 1)^{-1} \gamma_{d,t}^{*}}{a_{t-1} (a_{t-1} - 1)^{-1} \gamma_{d,t-1}^{*}}$$

(40)

Table 10 reports the implied average productivity increase among active firms for our three liberalization scenarios and compares them to Trefler’s estimates (shown in brackets underneath the implied productivity gains). Depending on the productivity measure we are trying to match, we are relatively close to Trefler’s estimates for both the unilateral Canadian and the bilateral liberalization. This does not hold for the increases implied by matching aggregate trade and productivity gains following a unilateral US liberalization.

35With Pareto, the productivity γ associated with rank ρ_{r} is $\gamma = kr^{-1/a}$. Differentiation shows that $\partial \gamma / \partial r < 0$ and $\partial \gamma / (\partial r \partial a) > 0$. Thus, given that sales are a monotonic function of productivity in our model, a flattening of the rank-size distribution is consistent with an increase in a.

24
Here we are some way off Trefler’s estimates, with our implied gains being only a third of Trefler’s estimates.

7 Concluding Remarks

TO FOLLOW!

References

Appendix

8 Comparative Statics - Productivity

This section shows that \(\frac{\partial \gamma_j}{\partial \tau_{jj'}} \) has got an ambiguous sign. Let us simplify by assuming two countries and some symmetry: \(F_j = F_{jj'} = F_{jj'}, K_j = K_{jj'}, \) and \(\mu_j = \mu_{jj'} \). Thus,

\[
\dot{\gamma}_j = \left[\frac{(1 + \tau_{jj'}^{-a})^{\frac{a-1}{a}} + (1 + \tau_{jj'}^{a})^{\frac{a-1}{a}}}{(1 + \tau_{jj'}^{-a})^{-1} + (1 + \tau_{jj'}^{a})^{-1}} \right] \ .
\]

(41)

One can show that

\[
\text{sign} \left\{ \frac{\partial \gamma_j}{\partial \tau_{jj'}} \right\} = \text{sign} \left\{ \frac{\sigma - 1}{a} \frac{1 - \left(\frac{1+\tau_{jj'}^{-a}}{1+\tau_{jj'}^{a}} \right)^{\frac{a-1}{a}}}{1 + \left(\frac{1+\tau_{jj'}^{-a}}{1+\tau_{jj'}^{a}} \right)^{\frac{a-1}{a}}} \right\}
\]

(42)

can be positive or negative, depending on the values of \(a, \sigma, \tau_{jj'} \) and \(\tau_{jj'} \). For example, fix \(a \) and \(\sigma \), and consider different values of \(\tau \): when both \(\tau_{jj'} \) and \(\tau_{jj'} \) tend to one, \(\text{sign} \left\{ \frac{\partial \gamma_j}{\partial \tau_{jj'}} \right\} > 0 \); when both \(\tau_{jj'} \) and \(\tau_{jj'} \) tend to infinite, \(\text{sign} \left\{ \frac{\partial \gamma_j}{\partial \tau_{jj'}} \right\} < 0 \).

9 Calibration

Two-country Model

We demonstrate below that with given values for \(a \) and \(\sigma \), our model can be solved for a set of positive parameter values \(F_d, F_f, F_{dx}/F_f, F_{fx}/F_d \) and \(K_d/K_f \). First, using the model’s equilibrium outcomes for \(N_d \) and \(X_{fd} \), we can solve for \(F_d \) as a function of \(a, \sigma \), and ‘data’:

\[
F_d = \frac{\tau_{fd} \mu_d - X_{fd} a - \sigma + 1}{a \sigma}.
\]

(43)

By symmetry, from the model’s equilibrium outcomes for \(N_f \) and \(X_{df} \),

\[
F_f = \frac{\tau_{df} \mu_f - X_{df} a - \sigma + 1}{a \sigma}.
\]

(44)

From the model’s equilibrium outcomes for \(N_d \) and \(N_f \) and from (43) and (44),

\[
\frac{F_{dx}}{F_f} = \left[\frac{(\tau_{fd} \mu_d - X_{fd})(\tau_{df} \mu_f - X_{df})}{(\tau_{fd})^a (\tau_{df})^a X_{fd} X_{df}} \right]^{-\frac{a-1}{a}} \left(\frac{F_{fx}}{F_d} \right)^{-1}.
\]

(45)
From (17), (20), and (43),

\[
\frac{K_d}{K_f} = \frac{\tau_{fd} \mu_d - X_{fd}}{(\tau_{fd})^a X_{fd}} \left(\frac{F_{fx}}{F_d} \right)^{\frac{a-1}{a}}.
\]

(46)

Notice that \(F_{dx}/F_f \) and \(K_d/K_f \) are functions of \(F_{fx}/F_d \) and known parameters/data. Hence, all we need to do in order to complete our calibration is to solve for \(F_{fx}/F_d \). For this, we can use any concentration ratio of industry-level sales, \(R^T_d \), as defined in (26).

After some algebraic manipulations, we obtain \(R^T_d \) as:

\[
R^T_d = \frac{a \sigma}{a - \sigma + 1} \left(\frac{N^T_d}{N_d} \right)^{\frac{a-1}{a}} N_d \cdot \left[F_d + \tau_{df}^{1-\sigma} \frac{\tau_{fd}^{1-\sigma} F_f}{F_d} \left(\frac{N_d}{N_f} \right)^{\frac{1-\sigma}{a}} \left(\frac{\tau_{fd} \mu_d - X_{fd}}{X_{fd}} \right)^{\frac{a-1}{a}} \left(\frac{F_{fx}}{F_d} \right)^{\frac{a-2 \sigma + 1}{(a-1) \sigma}} \right].
\]

(47)

This is a non-linear equation in \(F_{fx}/F_d \) with a unique positive solution. Once we obtain \(F_{fx}/F_d \), we can find values for \(F_{dx}/F_f \) and \(K_d/K_f \) from equations (45) and (46), respectively.

Three-country Model - No Natural Trade Barriers

The three-country version of our model requires additional parameters to be calibrated. Initially, we assume that \(\alpha_{ij} = 0 \) and that \(\tau_{ij} \) is thus a function of (known) tariffs only. We further make the simplifying assumption that export fixed costs are destination-specific only and do not vary by exporter. Thus, we now need values for \(a, \sigma, F_d, F_f, F_w, F_{df} = F_{wf}, F_{fd} = F_{wd}, F_{dw} = F_{wu}, K_f/K_d, \) and \(K_w/K_d \). We calibrate \(a \) and \(\sigma \) as in the two-country model, leaving us with eight parameters. We use functions of the now six bilateral trade flows and the number of firms in Canada, the US and the rest of the world (RoW) for our calibration.

Again, we can show that these moments can be exactly solved for a set of positive parameter values. To see this, we start from the expressions for the number of active firms and for bilateral trade flows to obtain,

\[
F_d = \frac{\mu_d - \tau_{fd}^{-1} X_{fd} - \tau_{wd}^{-1} X_{wd}}{N_d} a - \sigma + 1, \quad (48)
\]

\[
F_f = \frac{\mu_f - \tau_{df}^{-1} X_{df} - \tau_{wf}^{-1} X_{wf}}{N_f} a - \sigma + 1, \quad (49)
\]

\[
F_w = \frac{\mu_w - \tau_{dw}^{-1} X_{dw} - \tau_{fw}^{-1} X_{fw}}{N_w} a - \sigma + 1. \quad (50)
\]
Dividing X_{dw} by X_{fw},

$$\frac{X_{dw}}{X_{fw}} = \frac{K_d}{K_f} \left(\frac{\tau_{dw}}{\tau_{fw}} \right)^{1-a}.$$ \hfill (51)

Hence,

$$\frac{K_f}{K_d} = \frac{X_{fw}}{X_{dw}} \left(\frac{\tau_{dw}}{\tau_{fw}} \right)^{1-a}.$$ \hfill (52)

Similarly,

$$\frac{K_w}{K_d} = \frac{X_{wf}}{X_{dw}} \left(\frac{\tau_{df}}{\tau_{wf}} \right)^{1-a}.$$ \hfill (53)

Again from the expressions for bilateral trade flows, we can obtain

$$\frac{F_{jd}}{F_d} = \left[X_{jd} \frac{K_d}{K_f} N_d^{-1} \tau_{jd}^{-1} F_d^{-1} \left(\frac{a - \sigma + 1}{\sigma a} \right) \right]^{\frac{\sigma-1}{\sigma-a-1}},$$ \hfill (54)

$$\frac{F_{df}}{F_f} = \left[X_{df} \frac{K_f}{K_d} N_f^{-1} \tau_{df}^{-1} F_f^{-1} \left(\frac{a - \sigma + 1}{\sigma a} \right) \right]^{\frac{\sigma-1}{\sigma-a-1}},$$ \hfill (55)

$$\frac{F_{dw}}{F_w} = \left[X_{dw} \frac{K_w}{K_d} N_w^{-1} \tau_{dw}^{-1} F_w^{-1} \left(\frac{a - \sigma + 1}{\sigma a} \right) \right]^{\frac{\sigma-1}{\sigma-a-1}}.$$ \hfill (56)

Three-country Model - Natural Trade Barriers

Once we allow for natural trade costs, we require additional parameter values for the $\alpha_{jj'}$. To reduce the number of parameters, we make the simplifying assumption that bilateral trade costs are symmetric, i.e. $\alpha_{df} = \alpha_{fd}$, $\alpha_{dw} = \alpha_{wd}$ and $\alpha_{fw} = \alpha_{wf}$. This choice still requires three additional moments as compared to the three-country model without natural trade costs, yielding a total of eleven parameters. As moments, we again use bilateral trade flows (6), the number of firms (3) as well as two concentration ratios.

The implied system of non-linear equations cannot be solved explicitly this time. Instead, we calibrate our parameters via the minimization of a quadratic form in the deviations between moments and data. Formally, denote m the vector of data, $\hat{m}(\theta)$ the moments, and θ the parameter vector (all vectors are 11×1). Thus,

$$\theta = \arg \min_{\theta} \left(m - \hat{m}(\theta) \right)^\prime I(11) \left(m - \hat{m}(\theta) \right).$$ \hfill (57)

where $I(11)$ is the 11×11 identity matrix.

10 The Long Run

We start by restating the free entry conditions (38) for each country:

$$\left[1 - V(\gamma_j^*) \right] \frac{\Pi_j}{N_j} = \delta_j F_{je},$$ \hfill (58)
These conditions can be rewritten as

$$\frac{\sigma - 1}{a - \sigma + 1} \left[F_j \left(\gamma_j^* \right)^{-a} + \sum_{j' \neq j} \left(\frac{F_{j'}}{F_j} \right)^{\frac{a-1}{\sigma}} F_{j'} \tau_{j'j}^{-a} \left(\gamma_{j'}^* \right)^{-a} \right] = \delta_j F_{j'j} k_{j'}^{-a}. \quad (59)$$

Notice that the right-hand side of this condition consists of parameters only, whereas the terms on the left-hand side are functions of K_j. The left-hand side evaluated at the pre-liberalization steady state and post-liberalization steady state must match. Assuming that prior to the trade liberalization we had a steady state, we have a system of as many equations as countries that can be expressed in terms of unknowns K_j and $K_{j'}$, where a prime distinguishes the new steady state from the old steady state. Notice we can express the long-run growth rates of relevant variables (e.g., productivity) in terms of $K_j/K_{j'}$ and $K_{j'}/K_j$ and the rest of calibrated parameters. For the two-country version we obtain

$$\frac{z_t^d}{z_{t-1}^d} = \left(\frac{K_d'}{K_d} \right) \left[\frac{N_{d,t}}{N_{d,t-1} + N_{d,f,t-1}} \left[\theta_d \left(K_d', t \right) \right]^{\sigma-1} + \frac{N_{d,f,t}}{N_{d,t-1} + N_{d,f,t-1}} \left[\theta_{d'} \left(K_d', t \right) \right]^{\sigma-1} \right]^{\frac{1}{\sigma-1}}$$

for our theory-based productivity measure, where

$$\theta_d \left(K_d \right) \equiv \gamma_d^* / K_d^{1/a} = \left[\frac{F_d}{\mu_d} - \frac{\sigma a}{\sigma - 1} \right] \left[1 + \frac{K_f}{K_d} \tau_{d} \left(\frac{F_{d'}}{F_d} \right)^{\frac{\sigma-1}{\sigma}} \right]^{\frac{1}{\sigma}} \quad (61)$$

$$\theta_{d'} \left(K_d \right) \equiv \gamma_{d'}^* / K_{d'}^{1/a} = \left[\frac{F_d}{\mu_d} - \frac{\sigma a}{\sigma - 1} \right] \left[\frac{K_f}{K_d} + \tau_{d}^{-a} \left(\frac{F_{d'}}{F_d} \right)^{\frac{\sigma-1}{\sigma}} \right]^{\frac{1}{\sigma}} \quad (62)$$

For our empirical measure, Q_d / L_d, we have:

$$d \left(Q_d / L_d \right)_{LR} = \frac{\dot{Q}_{d,t}/\dot{L}_{d,t}}{\dot{Q}_{d,t-1}/\dot{L}_{d,t-1}} \quad (63)$$

where

$$\frac{\dot{Q}_{d,t}}{\dot{Q}_{d,t-1}} = \left(\frac{K_d'}{K_d} \right) \frac{F_d \left[\theta_d \left(K_d', t \right) \right]^{1-a} + \left(\frac{F_d}{F_{d'}} \right)^{\frac{\sigma-1}{\sigma}} F_{d'} \left[\theta_{d'} \left(K_{d,t} \right) \right]^{1-a}}{F_d \left[\theta_d \left(K_d, t-1 \right) \right]^{1-a} + \left(\frac{F_d}{F_{d'}} \right)^{\frac{\sigma-1}{\sigma}} F_{d'} \left[\theta_{d'} \left(K_{d,t-1} \right) \right]^{1-a}} \quad (64)$$

and

$$\frac{\dot{L}_{d,t}}{\dot{L}_{d,t-1}} = \left(\frac{K_d'}{K_d} \right) \frac{F_d \left[\theta_d \left(K_d', t \right) \right]^{-a} + \left(\frac{F_d}{F_{d'}} \right)^{\frac{\sigma-1}{\sigma}} F_{d'} \left[\theta_{d'} \left(K_{d,t} \right) \right]^{-a}}{F_d \left[\theta_d \left(K_d, t-1 \right) \right]^{-a} + \left(\frac{F_d}{F_{d'}} \right)^{\frac{\sigma-1}{\sigma}} F_{d'} \left[\theta_{d'} \left(K_{d,t-1} \right) \right]^{-a}} \quad (65)$$
Finally, the long-run changes in trade flows are:

\[
\frac{X'_{df,t}}{X'_{df,t-1}} = \left[\frac{\tau_{df,t}^{1-a} \mu_f \left(\frac{F_{df}}{F_d} \right)^{\frac{\sigma-1-a}{\sigma-1}}}{K_d^{1-a} + \tau_{df,t}^{1-a} \left(\frac{F_{df}}{F_d} \right)^{\frac{\sigma-1-a}{\sigma-1}}} \right] \left[\frac{K_{f,t} + \tau_{df,t}^{1-a} \left(\frac{F_{df}}{F_d} \right)^{\frac{\sigma-1-a}{\sigma-1}}}{K_d^{1-a} + \tau_{df,t}^{1-a} \left(\frac{F_{df}}{F_d} \right)^{\frac{\sigma-1-a}{\sigma-1}}} \right],
\]

(66)

and

\[
\frac{X'_{fd,t}}{X'_{fd,t-1}} = \left[\frac{\tau_{fd,t}^{1-a} \mu_d \left(\frac{F_{fd}}{F_d} \right)^{\frac{\sigma-1-a}{\sigma-1}}}{K_f^{1-a} + \tau_{fd,t}^{1-a} \left(\frac{F_{fd}}{F_d} \right)^{\frac{\sigma-1-a}{\sigma-1}}} \right] \left[\frac{K_{f,t} + \tau_{fd,t}^{1-a} \left(\frac{F_{fd}}{F_d} \right)^{\frac{\sigma-1-a}{\sigma-1}}}{K_f^{1-a} + \tau_{fd,t}^{1-a} \left(\frac{F_{fd}}{F_d} \right)^{\frac{\sigma-1-a}{\sigma-1}}} \right].
\]

(67)

11 Matching Productivity and Trade Growth

In this appendix we show that we can choose changes in the parameters \(a, K_f/K_d\) and \(K_d^{1/a}\) to exactly match the growth rates of aggregate productivity and exports and imports. First note that it is notationally less cumbersome to match the predicted post-liberalization values of trade flows which are implicitly defined by the growth rates estimated by Trefler. Thus, define \(\hat{X}_{j^*,t} = X_{j^*,t-1} \times d\hat{X}_{j^*}\), where \(d\hat{X}_{j^*}\) is the predicted sectoral level growth rates of exports or imports. Denoting all post-liberalization variables by subscript \(t\), we can then solve for \(K_{f,t}/K_{d,t}\) as a function of \(\hat{X}_{df,t}\) and \(a_t\) (see expression (22)):

\[
\frac{K_{f,t}}{K_{d,t}} = \frac{\mu_f - \hat{X}_{df,t}}{\hat{X}_{df,t}} \left(\frac{F_{df}}{F_d} \right)^{\frac{\sigma-1-a_t}{\sigma-1}} \equiv \kappa_1.
\]

(68)

Next, using \(K_{f,t}/K_{d,t}\) in the expression for \(\hat{X}_{fd,t}\), we can solve for \(a_t\) as

\[
a_t = \frac{(\sigma - 1) \left[\ln (\mu_d - X_{fd,t}) + \ln \frac{\mu_f - X_{df,t}}{X_{f,t}X_{df,t}} + \ln \left(\frac{F_{df}}{F_d} \right) \right]}{(\sigma - 1) \ln (\tau_{df,t} \tau_{fd,t}) + \ln \left(\frac{F_{df}}{F_d} \right)} \equiv \kappa_2.
\]

(69)

Lastly, we need to match productivity growth. Recall that we used two alternative measures, \(\tilde{x}_j^d\) and \(Q_j/L_j\). Solving the growth rate \(\tilde{x}_j^d/\tilde{x}_j^{d-1}\) for \(K_{d,t}^{-\alpha_t} K_{d,t-1}^{-\alpha_t-1}\), we obtain:

\[
K_{d,t}^{-\alpha_t} K_{d,t-1}^{-\alpha_t-1} = \left[\left(\frac{\alpha_t}{\alpha_t - \sigma + 1} \right)^{1/(\sigma - 1)} \right] \left[\left(\frac{\alpha_t}{\alpha_t - \sigma + 1} \right)^{1/(\sigma - 1)} \right]^{-1} \equiv \kappa_3,
\]

(70)
where \(d\gamma^d_t \) is the growth rate in sectoral productivity estimated by Trefler. Using \(Q_j/L_j \) instead, we obtain:

\[
K^{-1/a_t}_d K^{1/a_t}_d = \frac{a_{t-1/1-a_t}}{a_{t-1/1-a_t}} \left[\frac{F_d[\gamma^*_{d,t-1}]^{1-a_t-1} + \tau_{df}^{1-a_t-1} \left(\frac{F_{df}}{F_f} \right)^{\frac{\sigma-a_t}{\sigma}} F_f[\gamma^*_{df,t-1}]^{-a_t-1}}{F_d[\gamma^*_{d,0}]^{1-a_t} + \tau_{df}^{1-a_t} \left(\frac{F_{df}}{F_f} \right)^{\frac{\sigma-a_t}{\sigma}} F_f[\gamma^*_{df,0}]^{-a_t}} \right] (d\hat{Q}_j/L_j)^{-1}.
\]

Together with the pre-liberalization estimates for \(a \) and \(K_f/K_d \), the above estimates can be used to calculate the growth rates in \(a \), \(K_f/K_d \) and \(K^{1/a}_d \) reported in section 6.
Table 1: Trefler’s Results

<table>
<thead>
<tr>
<th>Tariff cuts</th>
<th>(1) Labour Productivity</th>
<th>(2) Canadian imports from the U.S.</th>
<th>(3) Labour Productivity</th>
<th>(4) Canadian imports from the U.S.</th>
<th>(5) Canadian exports to the U.S.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canadian tariffs</td>
<td>-1.420</td>
<td>-5.365</td>
<td>-1.454</td>
<td>-5.523</td>
<td>0.824</td>
</tr>
<tr>
<td>U.S. tariffs</td>
<td>-1.113</td>
<td>-5.289</td>
<td>-1.152</td>
<td>-5.040</td>
<td>-4.196</td>
</tr>
<tr>
<td>Business conditions</td>
<td>0.253</td>
<td>0.216</td>
<td>0.245</td>
<td>0.259</td>
<td>0.246</td>
</tr>
<tr>
<td>U.S. control</td>
<td>0.159</td>
<td>0.149</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Impact on most impacted, import competing industries
-1.420 (-3.11) -5.365 (-4.67) -1.454 (-3.16) -5.523 (-5.48) 0.824 (0.49)
-1.113 (-1.14) -5.289 (-2.16) -1.152 (-1.16) -5.040 (-2.33) -4.196 (-1.24)
0.253 (8.30) 0.216 (5.10) 0.245 (7.75) 0.259 (6.65) 0.246 (5.90)
0.159 (1.99) 0.149 (1.59)

Impact on most impacted, export-oriented industries
0.05 0.25 0.05 0.24 0.19

Total impact of CUSFTA (t-stat)
0.06 (3.84) 0.14 (6.10) 0.07 (3.89) 0.14 (6.99) 0.02 (0.43)

Adj. R-squared
0.31 0.24 0.30 0.33 0.16
Observations
211 210 183 183 183

Notes: Table displays coefficient estimates and t-statistics for OLS regressions based on specification (1). ‘Impact on most impacted, import competing industries’ is the weighted average impact on the 1/3 of Canadian industries exposed to the highest Canadian import tariff cuts (expressed in log points). ‘Impact on most impacted, export-oriented industries’ is the weighted average impact on the 1/3 of Canadian industries exposed to the highest US import tariff cuts. ‘Total impact’ is the combined average impact on all Canadian industries of both U.S. and Canadian tariff cuts.

Table 2a: Calibrated parameter values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Observations</th>
<th>Median</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ</td>
<td>183</td>
<td>9.01</td>
<td>5.16</td>
<td>17.41</td>
</tr>
<tr>
<td>a</td>
<td>183</td>
<td>15.96</td>
<td>6.33</td>
<td>45.21</td>
</tr>
<tr>
<td>F_d</td>
<td>183</td>
<td>10.92</td>
<td>1.43</td>
<td>590.70</td>
</tr>
<tr>
<td>F_t</td>
<td>183</td>
<td>15.79</td>
<td>0.46</td>
<td>1985.27</td>
</tr>
<tr>
<td>F_{kd}/F_d</td>
<td>183</td>
<td>20.89</td>
<td>0.04</td>
<td>1.30E+22</td>
</tr>
<tr>
<td>F_{kt}/F_t</td>
<td>183</td>
<td>7.16</td>
<td>0.03</td>
<td>359872.10</td>
</tr>
<tr>
<td>K_{kd}/K_d</td>
<td>183</td>
<td>0.15</td>
<td>0.00</td>
<td>31964.71</td>
</tr>
</tbody>
</table>
Table 3: Baseline simulation results

<table>
<thead>
<tr>
<th>Simulation</th>
<th>(1) Productivity Measure 1 – Melitz</th>
<th>(2) Productivity Measure 2 – Qd/Ld</th>
<th>(3) Canadian imports from the US</th>
<th>(4) Canadian exports to the US</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unilateral Canadian Liberalization ($\tau_{fd}=1$), weighted average effect on most impacted, import-competing industries</td>
<td>2.9%</td>
<td>3.9%</td>
<td>382.2%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Unilateral US Liberalization ($\tau_{df}=1$), weighted average effect on most impacted, export-oriented industries</td>
<td>0.7%</td>
<td>2.1%</td>
<td>0.0%</td>
<td>380.3%</td>
</tr>
<tr>
<td>Bilateral Liberalization ($\tau_{fd} = \tau_{df}=1$), weighted average effect across all industries</td>
<td>1.6%</td>
<td>2.2%</td>
<td>49.5%</td>
<td>35.0%</td>
</tr>
</tbody>
</table>

Number of industries: 183

Notes: Table presents simulation results for productivity and trade volume changes after the parameter changes indicated in the first row. We report weighted averages for the most impacted, import-competing third of industries (row 1), the most impacted, export-oriented third of industries (row 2), and for all industries (row 3). For productivity, we use the share of value added of an industry in 1988 in the total value added of the respective groups of industries as weights. For trade flows, we use the share of exports or imports of an industry in 1988 in the total value added of the respective groups of industries as weights.

Table 4: Baseline simulation results, outliers removed

<table>
<thead>
<tr>
<th>Simulation</th>
<th>Excluded sectors</th>
<th>(1) Prod. – Melitz</th>
<th>(2) Prod. – Qd/Ld</th>
<th>(3) Canadian imports from the US</th>
<th>(4) Canadian exports to the US</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unilateral Canadian Liberalization ($\tau_{fd}=1$), weighted average effect on most impacted, import-competing industries</td>
<td>Top and bottom 1%</td>
<td>2.8%</td>
<td>3.7%</td>
<td>372.9%</td>
<td>0.0%</td>
</tr>
<tr>
<td></td>
<td>Top and bottom 5%</td>
<td>2.0%</td>
<td>2.6%</td>
<td>288.8%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Unilateral US Liberalization ($\tau_{df}=1$), weighted average effect on most impacted, export-oriented industries</td>
<td>Top and bottom 1%</td>
<td>0.7%</td>
<td>2.1%</td>
<td>0.0%</td>
<td>333.1%</td>
</tr>
<tr>
<td></td>
<td>Top and bottom 5%</td>
<td>0.6%</td>
<td>1.6%</td>
<td>0.0%</td>
<td>174.4%</td>
</tr>
<tr>
<td>Bilateral Liberalization ($\tau_{fd} = \tau_{df}=1$), weighted average effect across all industries</td>
<td>Top and bottom 1%</td>
<td>1.6%</td>
<td>2.1%</td>
<td>48.9%</td>
<td>31.9%</td>
</tr>
<tr>
<td></td>
<td>Top and bottom 5%</td>
<td>1.4%</td>
<td>2.0%</td>
<td>43.8%</td>
<td>21.1%</td>
</tr>
</tbody>
</table>

Notes: Table presents simulation results for productivity and trade volume changes after the parameter changes indicated in the first row and the removal of outliers. See table 3 and text for details.
Table 5: Simulation results, regression-based approach

<table>
<thead>
<tr>
<th>Simulation</th>
<th>(1) Productivity Measure 1 – Melitz</th>
<th>(2) Productivity Measure 2 – Qd/Ld</th>
<th>(3) Canadian imports from the US</th>
<th>(4) Canadian exports to the US</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unilateral Canadian Liberalization (τ_{fd}=1), weighted average effect on most impacted, import-competing industries</td>
<td>2.4%</td>
<td>3.2%</td>
<td>137.6%</td>
<td>61.7%</td>
</tr>
<tr>
<td>Unilateral US Liberalization (τ_{df}=1), weighted average effect on most impacted, export-oriented industries</td>
<td>1.4%</td>
<td>1.8%</td>
<td>54.6%</td>
<td>104.6%</td>
</tr>
<tr>
<td>Bilateral Liberalization (τ_{df}=τ_{fd}=1), weighted average effect across all industries</td>
<td>1.3%</td>
<td>1.7%</td>
<td>30.9%</td>
<td>18.8%</td>
</tr>
<tr>
<td>Number of industries</td>
<td>183</td>
<td>183</td>
<td>183</td>
<td>183</td>
</tr>
</tbody>
</table>

Notes: Table presents simulation results for changes in productivity and trade flows after the parameter changes indicated in the first row. We report weighted averages for the most impacted, import-competing third of industries (row 1), the most impacted, export-oriented third of industries (row 2), and for all industries (row 3). For productivity, we use the share of value added of an industry in 1988 in the total value added of the respective groups of industries as weights. For trade flows, we use the share of exports or imports of an industry in 1988 in the total value added of the respective groups of industries as weights. The reported percentage increases are based on predictions of equation (2), estimated on the simulated data.

Table 6: Simulation results, long-run

<table>
<thead>
<tr>
<th>Simulation</th>
<th>(1) Productivity Measure 1 – Melitz</th>
<th>(2) Productivity Measure 2 – Qd/Ld</th>
<th>(3) Canadian imports from the US</th>
<th>(4) Canadian exports to the US</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unilateral Canadian Liberalization (τ_{fd}=1), weighted average effect on most impacted, import-competing industries</td>
<td>3.2%</td>
<td>3.8%</td>
<td>423.3%</td>
<td>-25.2%</td>
</tr>
<tr>
<td>Unilateral US Liberalization (τ_{df}=1), weighted average effect on most impacted, export-oriented industries</td>
<td>2.0%</td>
<td>3.2%</td>
<td>-18.3%</td>
<td>454.7%</td>
</tr>
<tr>
<td>Bilateral Liberalization (τ_{df}=τ_{fd}=1), weighted average effect across all industries</td>
<td>4.1%</td>
<td>2.8%</td>
<td>46.3%</td>
<td>38.0%</td>
</tr>
<tr>
<td>Number of industries</td>
<td>183</td>
<td>183</td>
<td>183</td>
<td>183</td>
</tr>
</tbody>
</table>

Notes: Table presents long-run simulation results for productivity and trade volume changes after the parameter changes indicated in the first row. We report weighted averages for the most impacted, import-competing third of industries (row 1), the most impacted, export-oriented third of industries (row 2), and for all industries (row 3). For productivity, we use the share of value added of an industry in 1988 in the total value added of the respective groups of industries as weights. For trade flows, we use the share of exports or imports of an industry in 1988 in the total value added of the respective groups of industries as weights.
Table 7: Simulation results, three countries, no natural trade costs

<table>
<thead>
<tr>
<th>Simulation</th>
<th>(1) Productivity Measure 1 – Melitz</th>
<th>(2) Productivity Measure 2 – Qd/Ld</th>
<th>(3) Canadian imports from the US</th>
<th>(4) Canadian exports to the US</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unilateral Canadian Liberalization ($\tau_{dl}=1$), weighted average effect on most impacted, import competing industries</td>
<td>2.4%</td>
<td>3.6%</td>
<td>412.7%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Unilateral US Liberalization ($\tau_{dr}=1$), weighted average effect on most impacted, export-oriented industries</td>
<td>0.5%</td>
<td>0.8%</td>
<td>0.0%</td>
<td>383.3%</td>
</tr>
<tr>
<td>Bilateral Liberalization ($\tau_{dl} = \tau_{dr} = 1$), weighted average effect across all industries</td>
<td>1.2%</td>
<td>1.6%</td>
<td>53.6%</td>
<td>35.0%</td>
</tr>
<tr>
<td>Number of industries</td>
<td>183</td>
<td>183</td>
<td>183</td>
<td>183</td>
</tr>
</tbody>
</table>

Notes: Table presents simulation results for productivity and trade volume changes after the parameter changes indicated in the first row. We report weighted averages for the most impacted, import competing third of industries (row 1), the most impacted, export oriented third of industries (row 2), and for all industries (row 3). For productivity, we use the share of value added of an industry in 1988 in the total value added of the respective groups of industries as weights. For trade flows, we use the share of exports or imports of an industry in 1988 in the total value added of the respective groups of industries as weights.

Table 8: Simulation results, three countries, natural trade costs

<table>
<thead>
<tr>
<th>Simulation</th>
<th>(1) Productivity Measure 1 – Melitz</th>
<th>(2) Productivity Measure 2 – Qd/Ld</th>
<th>(3) Canadian imports from the US</th>
<th>(4) Canadian exports to the US</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unilateral Canadian Liberalization ($\tau_{dl}=1$), weighted average effect on most impacted, import competing industries</td>
<td>1.3%</td>
<td>1.9%</td>
<td>490.8%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Unilateral US Liberalization ($\tau_{dr}=1$), weighted average effect on most impacted, export-oriented industries</td>
<td>-0.3%</td>
<td>0.6%</td>
<td>0.0%</td>
<td>272.5%</td>
</tr>
<tr>
<td>Bilateral Liberalization ($\tau_{dl} = \tau_{dr} = 1$), weighted average effect across all industries</td>
<td>0.5%</td>
<td>0.9%</td>
<td>59.6%</td>
<td>26.6%</td>
</tr>
<tr>
<td>Number of industries</td>
<td>183</td>
<td>183</td>
<td>183</td>
<td>183</td>
</tr>
</tbody>
</table>

Notes: Table presents simulation results for productivity and trade volume changes after the parameter changes indicated in the first row. We report weighted averages for the most impacted, import competing third of industries (row 1), the most impacted, export oriented third of industries (row 2), and for all industries (row 3). For productivity, we use the share of value added of an industry in 1988 in the total value added of the respective groups of industries as weights. For trade flows, we use the share of exports or imports of an industry in 1988 in the total value added of the respective groups of industries as weights.
Table 9: Parameter changes needed to exactly match aggregate trade and productivity increases (median values across industries)

<table>
<thead>
<tr>
<th>Simulation</th>
<th>Unilateral Canadian Liberalization ($\tau_{fd}=1$)</th>
<th>Unilateral US Liberalization ($\tau_{df}=1$)</th>
<th>Bilateral Liberalization ($\tau_{fd}=\tau_{df}=1$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change in a</td>
<td>6.8%</td>
<td>1.5%</td>
<td>8.8%</td>
</tr>
<tr>
<td>Change in $K_{f/a}$ - prod. measure 1 (Melitz)</td>
<td>3.6%</td>
<td>0.9%</td>
<td>4.6%</td>
</tr>
<tr>
<td>Change in $K_{f/a}$ - prod. measure 2 (Qd/Ld)</td>
<td>0.4%</td>
<td>0.4%</td>
<td>0.4%</td>
</tr>
<tr>
<td>Change in K_{f}/K_{d}</td>
<td>-24.6%</td>
<td>27.1%</td>
<td>-0.6%</td>
</tr>
<tr>
<td>Implied change in γ_{d} - prod. measure 1 (Melitz)</td>
<td>5.3%</td>
<td>1.6%</td>
<td>7.3%</td>
</tr>
<tr>
<td>Implied change in γ_{d} - prod. measure 2 (Qd/Ld)</td>
<td>1.7%</td>
<td>1.5%</td>
<td>3.1%</td>
</tr>
<tr>
<td>Implied change in γ_{f} - prod. measure 1 (Melitz)</td>
<td>3.1%</td>
<td>3.3%</td>
<td>6.8%</td>
</tr>
<tr>
<td>Implied change in γ_{f} - prod. measure 2 (Qd/Ld)</td>
<td>0.0%</td>
<td>3.5%</td>
<td>2.7%</td>
</tr>
<tr>
<td>Number of industries</td>
<td>183</td>
<td>183</td>
<td>183</td>
</tr>
</tbody>
</table>

Table 10: Implied average productivity gains at the firm-level

<table>
<thead>
<tr>
<th>Simulation</th>
<th>Moments matched</th>
<th>Prod. measure 1 (Melitz) and trade flows</th>
<th>Prod. Measure 2 (Qd/Ld) and trade flows</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unilateral Canadian Liberalization ($\tau_{fd}=1$), weighted average effect on most impacted, import-cometing industries</td>
<td></td>
<td>14.3% (8%)</td>
<td>9.5% (8%)</td>
</tr>
<tr>
<td>Unilateral US Liberalization ($\tau_{df}=1$), weighted average effect on most impacted, export-oriented industries</td>
<td></td>
<td>4.8% (14%)</td>
<td>3.7% (14%)</td>
</tr>
<tr>
<td>Bilateral Liberalization ($\tau_{fd}=\tau_{df}=1$), weighted average effect across all industries</td>
<td></td>
<td>6.1% (7%)</td>
<td>4.3% (7%)</td>
</tr>
<tr>
<td>Weights</td>
<td>Trefler</td>
<td>Trefler</td>
<td></td>
</tr>
<tr>
<td>Number of industries</td>
<td>183</td>
<td>183</td>
<td></td>
</tr>
</tbody>
</table>
Figure 1: Changes in the productivity distribution of active firms

Notes: Figures show implied changes in the productivity distribution for the median sector for a bilateral trade liberalization (initial cutoff normalized to unity). The top panel shows changes with an increase in a only, the middle panel shows changes with an increase in the cutoff only, and the bottom panel shows changes with increases in a and the cutoff.