Unionized labor markets and globalized capital markets

Marta Aloi* Manuel Leite-Monteiro† Teresa Lloyd-Braga‡

Abstract

This paper studies the effects of international integration of capital markets in a world where countries differ in their labor market institutions: one country has a perfectly competitive labor market while the other is unionized. We show that workers should favor autarky in the unionized country, but oppose it in the non unionized country and vice versa for owners of capital. Aggregate gains from integration, however, are negative. We also show that, under capital mobility an increase in relative bargaining power of unions does not always improve workers’ welfare: there is a critical level of bargaining strength above which an increase in union power reduces workers’ income in the unionized country.

Keywords: Capital mobility, Unions, Globalization
JEL: F20, J50

*Corresponding author. School of Economics and Leverhulme Centre for Research on Globalisation and Economic Policy, University of Nottingham, University Park, NG7 2RD Nottingham, UK. E-mail: marta.aloi@nottingham.ac.uk
† Universidade Católica Portuguesa, FCEE, Palma de Cima, 1649-023 Lisboa, PORTUGAL. E-mail: mlm@fcee.ucp.pt
‡Universidade Católica Portuguesa, FCEE, Palma de Cima, 1649-023 Lisboa, PORTUGAL. E-mail: tlb@fcee.ucp.pt
1 Introduction

The large increase in international capital flows and speed with which capital markets of industrial countries have become integrated represent one of the most striking recent changes in the world economy. Over the past decade, the increase in gross capital flows between industrialized countries has been about four time as large as the increase in trade flows, suggesting that world capital markets integration has proceeded even more rapidly than growth in international trade. The distributional consequences of greater integration in world capital markets are controversial. Greater integration, on the one hand, tends to be associated with increasing income inequality while, on the other hand, tends to be associated with a rise in average growth rate of world output.\(^1\)

The contribution of this paper is to uncover the effect of world integration of capital markets on factor incomes and welfare, when factor returns between countries differ due to different degrees of unionization of labor markets. Variations in factor returns across countries are considered to be an important source of international factor movements. The conventional approach in the literature is to assume perfect competition in all markets and account for differences in returns by appealing to differences in fundamentals such as factor endowments, technologies or preferences. However, differences in market structure may also account for the existence of differences in factor returns across countries. Typically, unions with a sufficiently strong bargaining power in the labor market are usually able to ensure an income for their members (workers) higher than the level of wages that would be observed under perfect competition. Indeed, in a closed economy, unions are able to influence the distribution of income to the benefit of workers and at the expense of capital owners and of lower returns to capital. Accordingly, if union bargaining power differs across countries factor returns would be different and we would expect international factor movements to occur if these were liberalized.

Labor unions tend to fear free trade and capital markets liberalization, their main concern being that before liberalization takes place workers of the trading partner countries should be granted essential rights, preferably similar to those enjoyed by home workers. Unions often claim that this is aimed at benefitting all workers, the struggle being between workers and capital owners around the world and not

\(^1\)It should be stressed that on the issue of costs and benefits of capital markets liberalization economists are divided, while most agree that commodity trade generally improves economic efficiency. See, e.g., Bhagwati (1998), Rodrik (1997) and Stiglitz (2004).
between workers from different countries.\(^2\) As a matter of fact workers’ resistance to the current process of globalization and increased international competition is widespread in industrialized countries, and workers are increasingly feeling left out from sharing the gains of international economic integration.\(^3\) By contrast, many of those who are in favor of liberalization of world economic transactions claim that unions aim merely at protecting their members against competition from workers of less regulated countries.

This paper shows that, when capital movements are liberalized, capital flows out of the highly unionized into the less unionized country and that such capital flows are inefficient at the world level, since capital movements are ultimately due to labor market distortions. Therefore, international capital mobility induces a decrease in output at the world level. Moreover, the capital share of world output increases at the expense of workers’ share of world output. We also study the effects on workers’ income of changes in the relative bargaining power between firms and unions. We demonstrate that, under free international capital mobility, an increase in union power may not work to the benefit of union members. In fact, contrary to what happens under autarky, under capital mobility an increase in union power does not always increase workers’ income, since it induces additional capital outflows.

In recent years a number of authors have investigated the interaction between labor unions and foreign capital penetration in domestic markets by focussing on the impact of foreign direct investment (FDI), mostly, looking at the factors influencing multinationals’ choice of location and at the welfare consequences of FDI for the host country (see, among others, Zhao 1995 and 2001, Skaksen and Sorensen 2001, Naylor and Santoni 2003).\(^4\) We abstract from FDI, and provide a simple formal model to

\(^2\)This is the position of the general secretary of the International Confederation of Free Trade Unions (Guy Ryder) and of the general secretary of the World Confederation of Labor (Willy Thys): “It is argued that the doubling of the global labor force with the entry of Chinese, Russian and Indian workers has changed the labor-capital ratio to the disadvantage of wage levels. Trade unions do not want anyone excluded from the global economy nor believe they can be. But they do want it subjected to reasonable regulations applicable to all countries, along with respect for workers’ rights. Similarly, capital will continue to be internationally mobile and the world division of labor will evolve accordingly.” (Financial Times, October 27th, 2006).

\(^3\)The existing evidence on workers’ perceived impact of globalization as a race to the bottom, applies to both strongly unionized countries (e.g. Germany, France) and industrialized countries where trade unions are weak and unemployment is low (e.g. US., UK.). See for instance the work by Scheve and Slaughter (2001), providing evidence that workers in the US increasingly fear the distributional consequences of globalization, and similar findings are reported by ILO (1999) for a wide sample of countries.

\(^4\)Zhao (1995) assumes imperfectly competitive product and labor markets and show that unionization gives rise to intra-industry FDI and lower wages. Zhao (2001) investigates whether labor
analyze the distributional effects of international competition for capital services between unionized countries. In our set up there are two countries, each producing the same single good, using the same technology and having the same fixed level of capital and labor endowments under autarky. Symmetry allows us to focus on how, in an integrated world economy, divergences in the labor market structure across countries, per se, affect income levels and their distribution between capital owners and workers. We assume that there is perfect competition in the output and capital service markets. Hence, if perfect competition prevailed in both countries labor markets, or the same degree of union bargaining power, no capital movements would occur because factor returns in the autarkic equilibrium would be the same in both countries. It is, therefore, the difference in union power between countries that causes differences in capital returns, which in turn induces capital movements once liberalization takes place. This set up differs substantially from those used in the unionization-FDI literature mentioned above, and is closer in spirit to the standard textbook approach of studying international factor movements; that is by means of a two country one good economy where countries are symmetric except in one dimension: factor returns.

To simplify the analysis, we assume that in one of the two countries there is perfect competition in the labor market (that is union power approaches zero), while in the other the labor market is unionized. When capital movements are liberalized, capital flows from the unionized into the non unionized country. As a result, workers’ income decreases, as well as output, while capitalists’ income increases in the unionized country, and vice versa in the non unionized country. At the world level, income per capita and workers’ share of world output decrease. Therefore, international capital mobility would not benefit workers, even if the gains obtained by capital owners were efficiently redistributed among all individuals, both at the world level and in the unionized country.

These results are at odds with the prediction of standard models that capital gains or loses when multinational conglomerates are both vertically and horizontally integrated. Skaksen and Sorensen (2001) focus, instead, on whether home workers gain (or lose) when there is complementarity (or substitutability) between activities moved abroad and activities remaining in the home country. Naylor and Santoni (2003) analyze the effects of union power and degree of substitutability between products on FDI.

Although FDI inflows have considerably increased since mid 1980s, FDI inflows largely understate the extent to which foreign capital penetrates domestic markets. The UN World Investment Report, for instance, indicates that between 1990 and 2000 the annual average ratio of FDI inflows to domestic capital formation in developed countries amounted to a mere 7.3 percent.

Hence there is no trade based on comparative advantage.
mobility leads to overall welfare gains, and may explain unions’ resistance towards globalization in a world with disparate workers’ bargaining strength. At the core of our results lies the imperfectly competitive nature of domestic labor markets, and related distortions in factor returns, which preclude overall welfare improvements once capital markets are opened up. The paper also addresses the issue of what is the desirable level of union bargaining power in the presence of internationally mobile capital. It is shown that there is a critical level of union power above which an increase in union strength reduces union members’ income.

The remainder of the paper is as follows. In Section 2 we present the model. In Section 3 we describe the autarkic equilibrium. In Section 4 we explore the effects of capital mobility, and Section 5 concludes.

2 The model

We consider a simple static model of two countries identical in everything except for union bargaining power. In each country there are K capitalists and N workers, each exogenously supplying one unit of their respective factor service. Both countries produce the same single good, taken as numeraire, with identical constant returns to scale technologies. In each country there is a large number M of identical firms, each producing y^j units of output according to the following production function:

$$y^j = F(k^j, l^j), \ j = A, B;$$

where k^j and l^j represent, respectively, the units of capital and labor used in production by a firm in country j.

Assumption 1. $F(k^j, l^j)$ is a real, concave increasing continuous function for $(k^j, l^j) \in \mathbb{R}^2_+$, positively valued and differentiable as many times as needed for $(k^j, l^j) \in \mathbb{R}^2_+$, with $F_k > 0$ and $F_l > 0$. Moreover, F is homogeneous of degree one in k^j and l^j, with a constant elasticity of substitution $\sigma \in [1, \infty)$, where

$$\frac{1}{\sigma} = \frac{F_{kk}}{F_k} / \left(1 - \frac{F_{kk}}{F_k}\right).$$

Capital is rented in a perfectly competitive market at the rental rate r^j, while wages and employment are determined through efficient bargaining between unions and firms. Unions are firm specific and workers are uniformly distributed among them. Hence, each union represents $n^j \equiv \frac{N}{M}$ workers and takes its number of members as given.7 We assume that workers own private pension assets,8 that is

7In many developed countries’ labor markets wage bargaining occurs at increasing decentralized levels. Katz (1993), among others, reports evidence of the decentralization in the structure of collective bargaining in most developed economies since the early 1980s.

8This set up can be justified in a more general model by assuming that, in this economy, capital
they are also members of pension funds, and the latter invest only in domestic corporate stocks. To diversify their portfolio, pension funds own an equal amount of every domestic firm. Accordingly, at a symmetric equilibrium, each worker receives \(\frac{1}{N} \) of each firm dividends out of his/her contributions. For each union the objective is to maximize the income of their members (wage and dividend earnings), while firms’ objective is to maximize profits.

We consider a two-stage game and assume that in the first stage firms pre-commit to a given level of capital \((k^j)\) knowing that the wage, \(w^j\), and employment, \(l^j\), will be negotiated afterwards, in the second stage of the game. To obtain the efficient bargaining solution we solve the generalized Nash bargaining problem, where the firm and union returns are net of their respective fallback (that is, net of the level of their returns in case no agreement takes place and \(l^j = 0\)). Accordingly, \(w^j\) and \(l^j\) are the solutions of the following problem,

\[
\max_{w^j, l^j} \left[F(k^j, l^j) - w^j l^j \right]^{1-\gamma^j} \left[w^j l^j \right]^\gamma^j, \quad \text{s.t.} \quad l^j \leq n^j,
\]

where \(1 > \gamma^j \geq 0\) represents country \(j\)’s union bargaining power, \(F(k^j, l^j) - w^j l^j\) represents the firm’s profits net of its fallback (that is, net of capital rental cost \(r^j k^j\)), and \(w^j l^j\) represents the income of union members net of their fallback (that is, net of the income coming from their private pension assets). The solution to this problem is: \(l^j = n^j\) and \(w^j = \gamma^j F(k^j, n^j) \frac{1}{n^j}\). By anticipating this bargaining outcome, the representative firm will choose to commit to the level of capital that maximizes profits, \((1 - \gamma^j) F(k^j, n^j) - r^j k^j\), which leads to the first order condition: \(r^j = (1 - \gamma^j) F_k(k^j, n^j)\). Using the Euler relations for the production function, it is easy to obtain the equilibrium levels of profits: \((1 - \gamma^j) F_l(k^j, n^j) n^j\). At the symmetric equilibrium, each worker receives from its pension fund assets the equivalent to profits of one firm and, therefore, income per worker becomes: \(w^* = \gamma^j F(k^j, n^j) + (1 - \gamma^j) F(k^j, n^j) \frac{1}{n^j}\), which can also be written as \(F_l(k^j, n^j) + \gamma^j F_k(k^j, n^j) \frac{1}{n^j}\).

owners are risk neutral while workers are risk averse and want to ensure themselves against future income uncertainties.

9 Private pension funds (and other means of private old-age maintenance) are particularly widespread among workers in anglosaxon countries; while in many other countries, inside and outside the OECD - that have traditionally relied on unfunded wage related pensions - private funded pensions are increasingly taking over. The strong home bias displayed by pension and other institutional assets in OECD countries is widely documented. For instance, Davis (2002) reports that foreign asset shares as percentage of total of pension funds in 1998 were close to 20% in Australia, Canada, Japan, Switzerland and the UK, and were around 11% in the US.

10 Note that workers’ bargained wage will be larger than the perfectly competitive wage \((F_l)\), provided that union power is sufficiently strong, i.e., \(\gamma > \frac{F_k}{F_l}\).
Exploiting symmetry of equilibrium, and the property of homogeneity of the production function, aggregate output is given by

\[Y_j = F(K^j, L^j) \]

where \(K^j \equiv Mk^j \) and \(L^j \equiv MPL \) represent countries’ total capital and labor services utilization. Since equilibrium in the labor market requires that \(L^j = \bar{N} \), the equilibrium values for factors’ income can be written as,

\[r^j = (1 - \gamma^j)F_K(K^j, \bar{N}) \] (1)

\[w^*j = F_L(K^j, \bar{N}) + \gamma^j F_K(K^j, \bar{N}) \frac{K^j}{\bar{N}}. \] (2)

While equilibrium factors’ (domestic) income shares correspond to,

\[s^j_K \equiv \frac{r^j K^j}{F^j} = (1 - \gamma^j) \frac{F_K(K^j, \bar{N})K^j}{F(K^j, \bar{N})} \] (3)

\[s^j_L \equiv \frac{w^*j \bar{N}}{F^j} = 1 - (1 - \gamma^j) \frac{F_K(K^j, \bar{N})K^j}{F(K^j, \bar{N})}. \] (4)

Note that when \(\gamma^j = 0 \) we recover the case of a perfectly competitive market; the rental costs of capital and labor income corresponding to their marginal products and, given the joint assumptions of constant returns and perfect competition, zero equilibrium profits. Compared to the perfectly competitive case, labor earns above its marginal product and the return to capital is below its marginal product.11

3 Autarky

At the autarkic equilibrium \(K^j = \bar{K} \), with \(j = A, B \), and \(Y^A = F(\bar{K}, \bar{N}) = Y^B \).

Two results are now worth emphasizing, for further comparison with the case of international capital mobility. First, since technologies and factor endowments are completely symmetric across countries, \(K^A = K^B = \bar{K} \) represents the world efficient allocation and, therefore, world output is maximized at the autarkic equilibrium. Second, although the two countries have the same aggregate output, the income distribution between workers and capital owners differs, since it depends on the union bargaining power. Accordingly, workers’ income and workers’ income share

11 Contrary to partial equilibrium settings, where firms take as given the interest rate and union bargaining power leads to underinvestment (see, e.g., Grout 1984), in our general equilibrium setting the effect of union bargaining power is to reduce interest rates (since demand of capital eventually decreases, although supply remains constant).
are higher, while capital rentals and capital share in output are lower, the higher is the union bargaining power. In fact, differentiating (2) with respect to \(\gamma \) we obtain,

\[
\frac{d\mu_j^*}{d\gamma} \bigg|_{Aut} = F_K(\bar{K}, \bar{N}) \frac{\bar{K}}{\bar{N}} > 0. \tag{5}
\]

We can then establish the following property.

Proposition 1. Under autarky, an increase (decrease) in union bargaining power increases (decreases) workers’ per capita income.

By use of (4), the effect of an increase in \(\gamma \) on workers’ income shares is given by

\[
\frac{d\mu_j}{d\gamma} \bigg|_{Aut} = F_K(\bar{K}, \bar{N}) \frac{\bar{K}}{\bar{N}},
\]

which is also positive. Hence, in a closed economy where inputs are fully utilized, the higher the union power the better off are the workers as they can appropriate a larger share of income. If capital movements are liberalized, however, capital owners have the option to invest capital abroad and, as we shall see below, the impact of increased union power on workers’ welfare may become negative.

4 Capital mobility

We assume that capital owners can invest their endowments in both countries, even though those capital movements are not accompanied by physical movements of capitalists. Their investment decision depends on the return to capital in countries A and B.

4.1. Equilibrium.

Under free capital mobility, in addition to (1) and (2), a no-arbitrage condition in the world capital market \((r^A = r^B)\) needs to be satisfied together with the world capital market clearing condition. Accordingly, the equilibrium levels of \(K^A\) and \(K^B\) are derived by solving the following equations

\[
\begin{align*}
(1 - \gamma^A)F_K(K^A, \bar{N}) &= (1 - \gamma^B)F_K(K^B, \bar{N}) \\
K^A + K^B &= 2\bar{K}. \tag{6} \tag{7}
\end{align*}
\]

From the no-arbitrage condition in the capital market (6), and by use of (7), it can be checked that if \(\gamma^A = \gamma^B\) then the solution \(K^A = K^B = \bar{K}\) would be obtained, which is identical to the solution under autarky. Indeed, if the two countries were characterized by the same union bargaining power, no capital movements would be
observed, and the equilibrium solution would precisely be the efficient one. Therefore, the no-arbitrage condition implies that capital movements are induced by differences in union power.

Hereafter, we denote unions bargaining power in country A by $\gamma^A = \gamma$ and, to simplify matters, we assume that in country B there is perfect competition in the labor market, that is $\gamma^B = 0$. Accordingly, we impose the following,

Assumption 2. $\gamma^A = \gamma$ and $\gamma^B = 0$.

In the lemma below we state conditions under which an equilibrium exists and is unique.

Lemma 1. Assume that $\lim_{K^A \to 0} F_K \left(2\bar{K} - K^A, \bar{N}\right) - (1 - \gamma)F_K \left(K^A, \bar{N}\right) < 0$ and $\lim_{K^A \to 2\bar{K}} F_K \left(2\bar{K} - K^A, \bar{N}\right) - (1 - \gamma)F_K \left(K^A, \bar{N}\right) > 0$. Then, under capital mobility there is a unique solution (K^A, K^B) satisfying $K^B > \tilde{K} > K^A$.

Proof. By use of (7), and given Assumption 2, (6) can be written as $Z(K^A) \equiv F_K \left(2\bar{K} - K^A, \bar{N}\right) - (1 - \gamma)F_K \left(K^A, \bar{N}\right)$, and a solution for K^A satisfies $Z(K^A) = 0$. Given Assumption 1, Z is a continuous increasing function of K^A, taking values in $\left(\lim_{K^A \to 0} Z(K^A); \lim_{K^A \to 2\bar{K}} Z(K^A)\right)$. Hence, $Z(K^A)$ takes the value zero for some $K^A \in (0, 2\bar{K})$, provided that $\lim_{K^A \to 0} Z(K^A) < 0$ and $\lim_{K^A \to 2\bar{K}} Z(K^A) > 0$. Moreover, $Z(\tilde{K}) = F_K \left(\tilde{K}, \bar{N}\right) - (1 - \gamma)F_K \left(\tilde{K}, \bar{N}\right) = \gamma F_K \left(\tilde{K}, \bar{N}\right) > 0$; therefore, since $Z(K^A)$ is an increasing function of K^A, it can only become zero for $K^A < \tilde{K}$.

From Lemma 1, equilibrium capital services are higher in country B ($K^B > \tilde{K} > K^A$), that is capital flows from the more to the less unionized country. These capital outflows from country A imply in turn that workers’ income in the unionized country is lower under capital mobility than under autarky. In view of (2), and using the Euler relations, we can derive the effect of capital mobility on workers’ income in country A, that is

$$\frac{dw^A}{dK^A} = \frac{K^A}{\bar{N}} \left(\gamma \frac{F^A_K}{K^A} - (1 - \gamma)F^A_{KK}\right) > 0,$$

where $F^j_K \equiv F_K \left(K^j, \bar{N}\right)$ and $F^j_{KK} \equiv F_{KK} \left(K^j, \bar{N}\right)$, $j = A, B$. By Assumption 1, the expression $\frac{dw^A}{dK^A}$ takes positive values, and therefore a decrease in K^A reduces workers’ income in country A. Since the utilization of capital services in country A is smaller under capital mobility than under autarky, (8) implies that workers’ income in the unionized country decreases when international capital movements
are liberalized. Obviously, capitalists’ income in country A increases, since the return to capital is a decreasing function of K^A.

Let us now study the effects of capital mobility on total income of country A. Gross national product in the unionized country amounts to $X^A = F(K^A, \bar{N}) + F^B_K (K^B - \bar{K})$.\(^{12}\) Differentiating the latter expression with respect to K^A and by use of (7) we obtain,

$$\frac{dX^A}{dK^A} = [F^A_K - F^B_K - F^B_{KK} (K^B - \bar{K})] > 0. \quad (9)$$

This expression takes a value zero at the autarkic solution, since $K^A = K^B = \bar{K}$; and becomes positive as soon as capital mobility is allowed. Indeed $\frac{dX^A}{dK^A} > 0$ since: $F^B_{KK} < 0$ by Assumption 1 and, at equilibrium, $(K^B - \bar{K}) > 0$ and $F^A_K > F^B_K$ under Assumption 2. Accordingly, moving from autarky to free capital mobility implies that the unionized country experiences a loss in national income.

Deriving the effect of capital liberalization in country B is straightforward. Since gross national product under capital mobility is given by $X^B = F(K^B, \bar{N}) - F^B_K (K^B - \bar{K})$, taking into account (7) we have,

$$\frac{dX^B}{dK^A} = F^B_{KK} (K^B - \bar{K}) < 0. \quad (10)$$

Accordingly, X^B increases as K^A decreases and thus income in the competitive country is higher under capital mobility than under autarky. Obviously, wages in country B increase (the capital rental rate decreases), since Euler relations together with concavity of F require that the marginal productivity of labor (of capital) is an increasing (decreasing) function of K.

World output reads as $Y^T = F(K^A, \bar{N}) + F(K^B, \bar{N})$, therefore,

$$\frac{dY^T}{dK^A} = F^A_K - F^B_K > 0. \quad (11)$$

With international capital flows $F^A_K > F^B_K$, hence as K^A decreases world output decreases as a result of the inefficient allocation of capital across countries. Accordingly, we can establish the following.

Proposition 2. Under capital mobility, income in the unionized country and in the world is lower than under autarky.

\(^{12}\)Since capital movements are not accompanied by physical movements of capital owners, we need to distinguish between national and domestic product.
Due to the different degree of distortion in labor markets the rental rate of capital is higher in the less unionized country, thus inducing inefficient capital movements. Output in this country increases but at the expense of an even higher decrease of output in the more unionized country, thus leading to lower world output.

Note that capital share in domestic output in country A is increasing in K^A. Hence, recalling that under autarky $s^A_K < s^K_B$, capital mobility further reduces the unionized country’s share of capital in output.\(^\text{13}\) The workers’ share of world output at the free capital mobility equilibrium is given by $\frac{w^A_N + w^K_B}{Y_T} = \frac{F^A_F}{\sigma} s^A_L + \frac{F^K_B}{\sigma} s^K_L$. By use of (3), (4) and (6), and after straightforward calculations, it follows that,

\[
\text{sign} \left\{ \frac{d \left(\frac{w^A_N + w^K_B}{Y_T} \right)}{dK^A} \right\} = \text{sign} \left\{ (s^K_B - s^A_K) \left(\frac{\gamma F^K_B}{F^A_F + F^K_B} + \frac{1}{\sigma} \right) + \gamma(1 - \gamma) \left(\frac{1}{\sigma} \right) \frac{F^K_B K^A}{F^A_F} \right\}. \tag{12}
\]

Since the share of capital in output is lower in the unionized than in the non unionized country, then, liberalization of capital movements brings about an increase in the share of world output of capital owners at the expense of workers’ share of world output.\(^\text{14}\)

4.2. Changes in relative bargaining power. We now study how, in a world characterized by internationally mobile capital, a change of the bargaining strength of workers, relative to firms in the unionized country, affects the equilibrium. Totally differentiating (6) and (7) with respect to γ gives us the impact of a change in union power on equilibrium capital levels, that is,

\[
\frac{dK^A}{d\gamma} = \frac{F^K_B}{F^K_B + (1 - \gamma) F^K_K} < 0. \tag{13}
\]

Clearly, $\frac{dK^B}{d\gamma} = -\frac{dK^A}{d\gamma} > 0$. Accordingly, an increase in union power in country A widens the difference in returns of capital across countries, favoring capital movement into country B even further. Since X^A, X^K and Y^T do not directly depend on γ, the effect of a change in γ on national income in both countries, and in the world, can be obtained by use of (9)-(11) as follows:

\[^{13}\text{Formally, differentiating } s^A_K \equiv (1 - \gamma) F^K_K K^A \text{ with respect to } K^A \text{ and using Assumption 1, gives } \frac{ds^A_K}{dK^A} = \frac{s^A_K}{K^A (1 - \frac{1}{\sigma}) F^K_K} > 0.\]

\[^{14}\text{Note that this occurs despite firms’ dividends being distributed to workers (via their pension assets). Had we not allowed for private pension assets, we would have observed even larger losses in workers’ share of world output.}\]
\[
\frac{dX^A}{d\gamma} = \frac{dX^A}{dK^A} \frac{dK^A}{d\gamma} < 0, \quad (14)
\]
\[
\frac{dX^B}{d\gamma} = \frac{dX^B}{dK^A} \frac{dK^A}{d\gamma} > 0, \quad (15)
\]
\[
\frac{dY^T}{d\gamma} = \frac{dY^T}{dK^A} \frac{dK^A}{d\gamma} < 0. \quad (16)
\]

Under autarky, capital and labor utilization in each country is fixed at equilibrium and, therefore, output is constant and unaffected by changes in union power. Equations (14)-(16) show however that, under capital mobility, a higher union power implies a net loss in national income in the unionized country and in the world (and a net gain in the competitive country). The following proposition summarizes this result.

Proposition 3. Under capital mobility, income in the unionized country and in the world is negatively correlated with union bargaining power.

Proposition 3 implies that the unionized country and the world are worse off when worker bargaining strength increases, due to the higher distortion in the unionized country labor market and induced inefficient capital movements. The competitive country, however, is better off for higher values of \(\gamma \).

We now ask if, given internationally mobile capital, an increase in union power can, after all, benefit workers in the unionized country. To study the sign of the correlation between union power and workers’ income in the unionized country under capital mobility, we totally differentiate (2) with respect to \(\gamma \) and obtain

\[
\left. \frac{dw^*A}{d\gamma} \right|_{Mob} = F^A_K K^A \frac{dK^A}{d\gamma} + \frac{dw^*A}{dK^A} \frac{dK^A}{d\gamma}, \quad (17)
\]

where \(\frac{dw^*A}{dK^A} \) is given by (8). The expression above reflects the fact that an increase in \(\gamma \) affects workers’ income through two channels (see 2). A direct channel, which raises the workers’ income share for a given level of output; and an indirect channel linked to the capital outflow triggered by the increase in union power. The effect working through the first channel is positive; it is represented by the term \(F^A_K K^A \) in (17) and is analogous to what happens under autarky (see 5). The second channel bears two effects, the sum of which is captured by the second term on the rhs of (17). In view of (2) these two effects are: (i) A decrease in the marginal productivity of labor (i.e., \(F^A_L \)); (ii) A change in the marginal contribution of capital to output.
(i.e., $F_A^A K^A$). The latter cannot be signed a priori, since it depends on the elasticity of substitution between capital and labor. However, using (8) and (13), it can be checked that the sum of the two effects is unambiguously negative, implying that

$$\frac{dw^A}{d\gamma} \bigg|_{Mob} < \frac{dw^A}{d\gamma} \bigg|_{Aut} = F_A^A K^A \frac{N}{N}$$. Accordingly, we have the following result.

Proposition 4. Under capital mobility, an increase (decrease) in union bargaining power increases (decreases) workers’ income by less than under autarky.

Although changes in union power do not affect national product nor world output at the autarkic equilibrium, they do affect its distribution between capital owners and workers. As seen earlier, union power and workers’ income in the unionized country are positively correlated under autarky. However, whether under capital mobility an increase in union power is able to increase workers’ income at all depends on the overall sign of (17). By use of (8) and (13) it can be easily checked that

$$\text{sign} \left\{ \frac{dw^A}{d\gamma} \bigg|_{Mob} \right\} = -\text{sign} \left\{ \gamma \frac{F_A^A}{K^A} + \frac{F_B^B}{K_B} \right\}$$, which again depends on the elasticity of substitution between capital and labor, as well as on the levels of K^A and K^B. Given Assumptions 1 and 2, the following result applies.

Proposition 5. Under capital mobility, there is a threshold value γ^* above (below) which workers’ income in the unionized country decreases (increases) with γ.

Proof. Using (6)-(7), we obtain that

$$\text{sign} \left\{ \frac{dw^A}{d\gamma} \bigg|_{Mob} \right\} = \text{sign} \left\{ (1 - \gamma) \frac{dL}{d\gamma} \bigg|_{Mob} \right\}$$. The latter expression is a continuous decreasing function of $\gamma \in [0, 1)$, taking all values in $\left[\frac{dL}{d\gamma} \bigg|_{Mob}, -1 \right)$. Hence there is a critical value γ^* at which

$$\frac{dw^A}{d\gamma} \bigg|_{Mob} = 0$$ and thus

$$\frac{dw^A}{d\gamma} \bigg|_{Mob} > 0$$ for $\gamma < \gamma^*$ and

$$\frac{dw^A}{d\gamma} \bigg|_{Mob} < 0$$ for $\gamma > \gamma^*$. ■

Proposition 5 means that unions that are willing to maximize workers income, under internationally mobile capital, face a critical level of bargaining power, γ^*. Pushing their bargaining power beyond that level will only hurt workers.

5 Conclusions

We have shown that, if one country is unionized whereas the other is not, unions will always prefer autarky but the competitive country and its workers will be better off under free movements of capital. Capital owners, on the other hand, benefit from capital movement liberalization when this is induced by the presence of unions in their domestic market, whereas those residing in the competitive country would...
suffer a decrease in their per capita income. The aggregate gain though is negative, since capital flows are induced by a distortion in returns.

With capital internationally mobile, however, the world would gain if the non unionized country were to converge to the same degree of unionization of the other country. In this case no factor movements would occur at equilibrium, and workers of the unionized country would not lose from liberalization. Accordingly, for workers in unionized countries it makes sense to push towards achieving, prior to integration, similar levels of bargaining strength around the world. In contrast, under asymmetric unionization and integrated capital markets, if workers’ bargaining strength in the unionized country is relatively high, a reduction in union power actually benefits union members, as it limits the size of capital flows out of the unionized country and its negative effects on labor productivity and on the marginal contribution of capital to output.

Finally, let us remark that, to simplify the analysis and to establish a first set of relevant results, we have abstracted from considering unemployment. Our conjecture is that the existence of unemployment in the unionized country would reinforce the outflows of capital. Indeed, with lower levels of employment, the marginal productivity of capital in the unionized country is also lower and, thereby, the differential in capital return across countries will be higher. However, the final effects on factor returns, employment and output may depend on the way unemployment is generated. This issue is left for future research.

References

