Abstract

In this paper the regulation of international firms by national authorities is examined. Anticompetitive behavior is modeled as strategic sabotage affecting the costs of rivals. Issues explored include welfare implications of sabotage by international firms, benefits from regulation of such behavior, impacts of nationality on incentives for regulation of firms, desirability of mergers, and the importance of nationality of firms for regulators. Firms may prefer enforced regulation of behavior to the unregulated Nash equilibrium. Mergers may prove beneficial as sabotage incentives are internalized. While there are potential gains from an international agreement, countries have similar incentives to cheat as firms.

Key words: international competition policy, open economy, sabotage, regulation

JEL: L4, F13, K21
1 Introduction

This paper explores firm sabotage when markets are international rather than national. International regulation of anticompetitive behavior by firms is examined in this setting, highlighting the scope for conflicting interests across borders to drive different approaches to the same anticompetitive behavior. The scope for strategic application of antitrust rules, and for sustainable cooperation in policing anticompetitive behavior, is also examined.

Until quite recently, antitrust has been a largely national affair, with only a limited number of operational regimes actually in place. Coordination or conflict across regimes was simply not an issue. However, there has since been an explosion of antitrust regimes, roughly coincident with the explosion of antidumping regimes and adoption of other rules and norms linked to the implementation of World Trade Organization agreements. We have moved from a handful to over 100 regimes now in place and operational. (Shenefield 2004). With the struggle of Microsoft against cases in the EU, the U.S., Korea, and Australia, we have seen different national regimes take different approaches to the same problem. In Europe, countries in the EU orbit assign competition policy to Brussels. However, national interests inside Europe then compete behind closed doors as policy is set. In the U.S., individual states piled into the US case, with different states ultimately taking different positions. The U.S. case itself proved susceptible to politics, as the treatment of the case changed with the switch-over from the Clinton to the Bush Administration. (Niels and ten Kate 2004, Gilbert and Katz 2001, Morgan and McGuire 2004). The basic approach followed in this paper involves firms that both engage
in direct production, and sabotage their rivals’ production costs. Raising the
costs of rivals can take a number of forms, including vertical integration, neg-
ative campaigning or lobbying, and exclusion agreements. (Beard et al 2001,
Krattenmaker and Salop 1986, Salop and Scheffman 1987, 1983, Amegashie
and Runkel 2005). It serves as a useful reduced form for a number of firm
strategies that are anticompetitive by nature. ¹ Our interest here is in the
interaction between consumer surplus, profits, and nationality in such cases.

The paper is organized as follows. Section 2 develops the basic model. This is
followed, in Sections 3, 4, and 5, by discussion of merger policy, fines and/or
other punishment for sabotage, and the role of politics. Section 6 concludes.
A number of results stand out. Mergers may prove beneficial (i.e. procompet-
itive) because of the destructive nature of non-price competition, such that
mergers are beneficial as sabotage incentives are internalized. This introduces
a tension between consumer benefits and efficiency, with resulting scope for
conflicting positions on mergers by competition authorities depending on the
nationality of firms. While symmetric firms will prefer enforced regulation of
behavior to the unregulated Nash equilibrium, asymmetries either in firm cost
structure or relative size of consumer markets may also lead to a divergence
of interests on the part of competition authorities. In addition, like capacity,
the potential to sabotage a higher-cost rival can prove a prohibitive barrier

¹ A recent example of direct sabotage is the investment by Microsoft, both through
licensing payments and through investments by major individual Microsoft stake-
holders, in SCO, a company whose business plan was largely focused on suing major
vendors of Linux (a competing operating system viewed as a threat to Microsoft’s
Windows operating system). (Preimesberger 2004). The SCO litigation, for a time,
forced Linux hardware vendors not only to incur legal costs, but also to indemnify
customers until the SCO case was settled. In the more distant past, the model devel-
oped here can also be used to characterize competition between spice conglomerates
in the 16th Century, when Dutch and British companies both built ships to carry
spice, and also built ships to sink the boats of their rivals. Milton (1999).
to entry. On the politics side, the framework developed here provides scope for international (e.g. U.S. vs. EU) or intra-national (e.g. California vs. Oregon) positions to vary on policing firm sabotage due to location of industry. Even without selective or biased enforcement of anti-sabotage rules, even balanced, unbiased enforcement can serve strategic purposes linked to shifting producer and consumer rents across borders. Indeed this is why, in theory, the EU has centralized competition policy – to preclude yet another arena for beggar-thy-neighbor policies.

2 The model

We consider sabotage here to be the reduced form for a broad range of anti-competitive behaviors, as discussed in the introduction. Our goal is to develop a framework for the following sections, where we explore the desirability for regulation of such behavior on the part of foreign firms by local competition authorities and the related implications of nationality of firms for international regulation of firms and the scope for the strategic application of competition policy. We focus here on the interaction of two firms engaged both in direct production, and in the sabotage of the production activities of the competing firm through actions aimed at altering the competitor’s cost structure.

2.1 The basic set-up

Assume two countries, home and foreign. They are indexed by $h$ and $f$. For tractability, inverse demand functions are linear, with price $p_r$ a function of quantity $q_r$. 
\[ p_r = a_r - b_r q_r \quad r = h, f \]  

We abstract away from trade policy, and are interested in interactions between regulatory regimes in two countries linked through trade. As such, we work with an integrated market where total demand \( q \) is the combined demand in the home and foreign markets.

\[
p = a - bq \\
a = (a_h b_f + a_f b_h) \left( b_f + b_h \right)^{-1} \\
b = (b_h b_f) \left( b_f + b_h \right)^{-1}
\]  

Total quantity in the integrated market is the total supply from firms \( i = 1, 2 \), and identically is equal to the sum of home and foreign demand. We can therefore rewrite the demand-side equilibrium conditions for the market as follows.

\[
q = q_1 + q_2 \\
= q_h + q_f \\
p = a - b(q_1 + q_2)
\]

Firms are engaged in a repeated sequence of two-stage games. This involves sabotage in the first stage, and production and sale in the second stage. For now we focus on the non-cooperative Nash equilibrium, though we will later discuss the cooperative (no sabotage) equilibrium as well when we turn to regulation in subsequent sections. Profits \( \pi_j \) are defined as revenue \( pq_j \) less production costs and sabotage costs, where sabotage costs are assumed to be quadratic in the level of sabotage.\[^2\] We assume that costs can be mapped to

\[^2\] It seems reasonable to assume that sabotage costs are increasing in level of realized sabotage. This would follow, for example, from paying to secure input supply, and
the price $p_z$ for input bundle $z$.\(^3\) In formal terms, stage 2 profits for firm $i$ given that the firm has realized sabotage $g_j$ from firm $j$ will be:

$$\pi_j = pq_j - p_zq_jc_j(1 + q_k)|_{j,k=1,2,k\neq j}$$  \hspace{1cm} (5)

We solve by for the set of SPNE solutions by backward induction. Cournot quantities in the second stage will be:

$$q_j = (a + p_zc_k(1 + g_j) - 2p_zc_j(1 + g_j))(3b)^{-1}|_{j,k=1,2,k\neq j}$$  \hspace{1cm} (6)

Turning then to the first stage, given second stage quantities, we note first that total input needs, inclusive of quantities in the second stage, will be

$$z_j = c_j \left(q_j (1 + g_k) + \alpha_jg_j^2\right)|_{j,k=1,2,k\neq j}$$  \hspace{1cm} (7)

while profits will be

$$\pi_j = pq_j - p_zz_j|_{j=1,2}.$$  \hspace{1cm} (8)

We can substitute equations (7) into equations (8) and solve for reaction curves in sabotage space. This gives us equations (9) and (10).

\[^3\] Would follow directly from increased difficulties with marginal increases in damage to the total cost structure of the competition. One could, of course, go beyond the structure we use here and introduce counter-sabotage, or scale/scope economies in sabotage, or even increasing own-costs as a result of sabotage. It is worth noting that with pure linear sabotage costs, in a system where all else is also linear as here, we get reaction curves in sabotage space such that there is no sabotage, or completely destructive (i.e. repeated escalation of) corporate warfare.

\[^3\] We do not explicitly include discount rates here, but obviously we can simply view our coefficients as including a discounting of relevant stage costs.
\[
g_1 = \frac{-c_2(-2p_z c_1 g_2 + p_z c_2 - 2p_z c_1 + a)}{p_z c_2^2 - 9c_1 \alpha_1 b} \\
g_2 = \frac{c_1(p_z c_1 - 2p_z c_2 g_1 - 2p_z c_2 + a)}{9c_2 \alpha_2 b - p_z c_2^2}
\]

Figure 1 graphs equations (9) and (10) for a set of coefficients that will be used in numeric examples in the sections that follows. We can solve explicitly for the solution values for \(g_j\) and use these in turn to solve for equilibrium quantities using equations (6). This gives us the equilibrium solutions for sabotage and production.

\[\text{Fig. 1. Reaction curves in sabotage space}\]

---

\(^4\) The coefficient values in Figure 1 are \(a = 10, b = 0.1, c_1 = 1, c_2 = 1, \alpha_1 = \alpha_2 = 4, p_z = 1.\)
\[ g_j = \frac{c_k \left( 6c_k \alpha_k b p_z c_j - 3c_k \alpha_k b a + p_z c_j^2 a - p_z^2 c_k c_j^2 - 3p_z c_k^2 \alpha_k b \right)}{p_z^2 c_j^2 c_k + 3p_z c_k^2 \alpha_k b - 27c_j \alpha_j b^2 c_j \alpha_j + 3c_k^2 \alpha_k b p_z} \]  
\[ j, k = 1, 2 \quad k \neq j \tag{11} \]

\[ q_j = \frac{3c_j \alpha_j \left( 6c_k \alpha_k b p_z c_j - 3c_k \alpha_k b a + p_z c_j^2 a - p_z^2 c_k c_j^2 - 3p_z c_k^2 \alpha_k b \right)}{p_z^2 c_j^2 c_k + 3p_z c_k^2 \alpha_k b - 27c_j \alpha_j b^2 c_j \alpha_j + 3c_k^2 \alpha_k b p_z} \]  
\[ j, k = 1, 2 \quad k \neq j \tag{12} \]

2.2 Properties of equilibrium in the basic model

We now turn to developing the properties of the basic model, before then focusing on regulation of firm behavior in the sections that follow. Consider first the relative effort a firm will devote to actual production, and to sabotaging of the production efforts of the competitor. From our equilibrium solution values for \( q \) and \( g \), we can show that these are a function of the underlying structure of own and competitor costs. We start by defining \( \psi \) as the ratio or sabotage effort to direct production effort:

\[ \psi_j = \frac{g_j}{q_j} = \frac{c_k}{3c_j \alpha_j} \quad |j, k = 1, 2, k \neq j \tag{13} \]

If we then look at relative sabotage intensity for our two firms, using \( \psi \) as our metric,

\[ \Psi_{j,k} = \frac{\psi_j}{\psi_k} = \frac{c_k^2 \alpha_k}{c_j^2 \alpha_j} \tag{14} \]

we can make the following observations.

**Observation 1** The relative importance of anticompetitive behavior (sabotage of the competitor) for a firm is inversely related to own production and sabotage costs, but directly related to the cost of production for the competing firm.
Observation 2 With identical sabotage costs but variations in production costs, the larger firm – which will be the lowest cost firm – will also be the firm with the greatest share of its overall activity devoted to anticompetitive behavior.

Observation 3 With identical production costs but variations in sabotage costs, the firm with lower sabotage costs will also be the firm with the greatest share of its overall activity devoted to sabotage.

Observations 1-3 follow directly from differentiation of (14).

\[
\frac{\partial \Psi_{1,2}}{\partial c_2} \bigg|_{\alpha_1 = \alpha_2} = \frac{2c_2}{c_1^2} > 0
\]  

(15)

\[
\frac{\partial \Psi_{1,2}}{\partial \alpha_2} \bigg|_{\alpha_1 = \alpha_2} = \alpha_1^{-1} > 0
\]  

(16)

What we have is a situation where when firms vary in size because one has a cost advantage, the larger firm will engage in relatively more anticompetitive behavior than the smaller firm. This follows from the fact that the larger firm has more market power, and so is able to better internalize the benefits linked to investment in a reduced supply response from the competing firm. Hypothetically speaking, if we had, for example, a dominant supplier of computer operating systems, this dominant supplier would be more badly behaved vis-à-vis the competing supplier, while the smaller supplier of operating systems would focus more of its efforts on actual production rather than on anticompetitive behavior.
We can go past these basic observations. Similar to the set of well-known results where capacity commitments can act as a barrier to entry (Spence 1977, Dixit 1980), it is possible, depending on the cost of sabotage, for the larger firm to completely drive the smaller firm out of the market by the threat of sabotage, such that the actual equilibrium is monopoly. The monopoly outcome follows directly from the opportunity to sabotage, and so offers an alternative avenue, outside predatory pricing, for a firm to drive out the competing firm.

This is summarize in the following observation:

**Observation 4** With asymmetric costs, the big firm may be able to credibly force the small firm out of the market, meaning we then have a monopoly following from threat of sabotage.

Observation 4 is proven by example in Figure 2.\(^5\) In the figure, we have full symmetry except that firm 2 has production costs 5% higher than firm 1. We then vary symmetric sabotage costs. As sabotage costs fall, then from equations (12) sabotage will rise. There is a breakpoint beyond which firm 1 is able to drive firm 2 out of the market. This means there is a range below the breakpoint where the threat of sabotage is sufficient to give firm 1 a monopoly in the market, as the two-player equilibrium induces guaranteed losses for the smaller firm.

3 Nationality and Pro-competitive Mergers

We turn next to merger policy. While there has been a recent explosion in the legal literature, there is a relatively small corresponding economics liter-

---

\(^5\) The coefficient values in Figure 2 are \(a = 10, b = 0.1, c_1 = 1, c_2 = 1.05, \alpha_1 = \alpha_2 = 0.10, p_z = 1.\)
Fig. 2. The ability to force the other firm out through threat of sabotage
ature on the theory of international merger policy. This includes Head and
Ries (1997), Horn and Levinsohn (2001), and Francois and Horn (2006). The
emphasis in this literature is on the negative impact that mergers may have
on consumer welfare because of increased concentration. This may be offset
by the potential to shift higher profits to the home (regulating) country. In
this literature, there may also be scope for scale effects to partially offset
concentration aspects of merger.

Here, we actually have a different mechanism at play. Because we are working
with a world where firms actively sabotage the efforts of competing firms,
there is scope for welfare gains from encouraging firms to merge. Basically,
this is a second-best alternative to policing anticompetitive behavior directly.
If the sabotaging firms merge, the sabotage behavior stops. This makes the
surviving firm more profitable, as it focuses its efforts on its own production
rather than on attacks on its rivals. We start with the following observation:

**Observation 5** *In an integrated market, mergers may increase welfare if they bring an end to otherwise destructive anticompetitive behavior. This is driven by loss of profits in the "war of attrition" equilibrium.*

Observation 5 is demonstrated by numeric example in Figure 3. In the figure, we have mapped total welfare $W$ as a function of profits $\pi$ and consumer surplus $CS$. Firms are symmetric for this example in terms of production and sabotage costs.

$$W = \pi_1 + \pi_2 + CS|_{\text{duopoly}}$$

$$W = \pi_1 + CS|_{\text{monopoly}}$$

In the Figure 3 we are varying sabotage costs along the horizontal axis. As sabotage costs fall, levels go up and firm profits fall as a result. What can be seen in the figure is that there is a breakpoint in sabotage costs and implied sabotage levels, below which overall welfare is higher with monopoly than it is with oligopoly. We are not saying here that this is always the case, but only that it is possible. Note that what happens in this case is that the increase in profits that follows from reducing competition in product space more than offsets losses to consumers. In terms of a closed economy, the implications are relatively straightforward. If we are unable to police anticompetitive behavior directly, a pro-merger policy may also be a preferred pro-competitive policy in terms of total welfare, because it shuts-down sabotage activities.

The situation gets more interesting, in an analytical sense, when we introduce nationality. To keep things simple, we will assume that both firms are in the

---

6 The coefficient values in Figures 3 and 4 are $a = 10, b = 0.1, c_1 = 1, c_2 = 1, \alpha_1 = \alpha_2 = 3.75..30, p_z = 1$. 

---
home country $h$, while consumers are evenly split between home $h$ and foreign $f$. Competition authorities seek to maximize an objective function $W$ that is a weighted sum of consumer surplus $CS$ and producer surplus $PS$. While in the antitrust literature the weights $\gamma$ are usually assumed to all be one, they may vary because of political economy factors, as in the literature on trade policy. (See Hillman 1982, 1989, and Grossman and Helpman 1994.)

**duopoly**

\begin{align}
W_{h,d} &= \gamma_{h,\pi}\pi_{h,d} + \gamma_{h,\pi}\pi_{2,d} + \gamma_{h,CS}CS_{h,d} \\
W_{f,d} &= \gamma_{f,CS}CS_{f,d}
\end{align}

**monopoly**

\begin{align}
W_{h,m} &= \gamma_{h,\pi}\pi_{f,m} + \gamma_{h,CS}CS_{h,m} \\
W_{f,m} &= \gamma_{f,CS}CS_{f,m}
\end{align}
For the discussion that follows, we will assume welfare maximizing competition authorities, such that $\gamma = 1$. In this case, it should be clear from Figure 3 that national preferences for a merger may diverge. This point follows directly from Observation 5, and is summarized in the following corollaries.

**Corollary 1** When both firms are domestic, national regulators may favor mergers that harm domestic consumers for efficiency reasons related to profits. The more export-oriented the industry, the less important consumer surplus and the more likely mergers will be favored.

**Corollary 2** When both firms are foreign, national regulators will oppose mergers even if they are globally welfare improving.

We illustrate corollaries 1 and 2 with Figure 4. In the figure, we have the same basic equilibrium illustrated in Figure 3. The critical difference is that following equations (18) and (19), we have assigned all profits to the home country, so that home welfare is a combination of consumer surplus and profits while foreign welfare is a function of consumer surplus alone. What follows is a clear welfare ranking for $h$ and $f$, where the rankings are in conflict. The example is enough to make the point that while it will not necessarily happen, it is quite possible that one country will prefer a merger, while the other will oppose it. A similar finding can be found in the literature stressing the direct impact of mergers on market power. The critical difference here is the addition of sabotage effects. Even if a country would otherwise oppose merger in the absence of sabotage, it may support it where it serves to limit destructive competition on the part of firms. In cases where a country would support merger anyway due to profit shifting (in effect due to terms-of-trade gains), the pro-competitive aspects of the merger, in the sense of a limiting effect on
destructive competition, will reinforce this effect. In addition, if the foreign
country received at least some profits in addition to consumer benefits, the
pro-competitive effects of merger might then be enough to tip the balance
from opposing the merger to supporting it.

![Graph showing home and foreign welfare against sabotage costs]

Fig. 4. Nationality and pro-competitive mergers

4 Barfights and Regulation of Destructive Competition

4.1 symmetric firms and demand

We turn next to the direct regulation of anticompetitive behavior of firms.
We start with the cleanest case – pure symmetry in production costs for a
type-\(h\) and type-\(f\) firm and symmetric populations of identical type-\(h\) and
type-\( f \) consumers. In this pure symmetric case, the firms are better off if we limit sabotage. In a sense, the equilibrium with sabotage is comparable to a bar fight with balanced opponents. Neither side really wins, and both sides are better off if the fight does not get started in the first place or if it ends early. This point is illustrated with Figure 5.\(^7\) In the figure, we have mapped profits for firms 1 and 2 against the costs of engaging in sabotage, indexed by the cost coefficient \( \alpha \). Note first that in the symmetric case, there is a ridge line that maps increasing profits for both firms as a function of symmetric increases in sabotage costs. While not shown, there is a corresponding increase in consumer welfare as well along this ridge line. The figure also illustrates the scope for gains from selective enforcement by competition authorities.

\(^7\) The coefficient values in Figure 5 are \( a = 10, b = 0.1, c_1 = 1, c_2 = 1, \alpha_1, \alpha_2 = 3.75, p_z = 1 \).
Assume that enforcement can be translated into an increase in the sabotage cost coefficient $\alpha$. It can be seen in Figure 5 that enforcement against one firm will tend to raise the profits of the other firm. This leads us to the following observations:

**Observation 6** With split ownership (type-f and type-h firms) of cost-symmetric firms, all consumers and all firms gain from joint, uniform penalties on sabotage that increase $\alpha$ symmetrically across both firms.

**Observation 7** With split ownership (type-f and type-h firms) of cost-symmetric firms, national competition authorities have a short-run incentive to police foreign firms more strictly because of the impact on the profits of domestic firms.

Observation 6 can be seen from Figure 5. It implies that, even in the absence of external penalties, with an appropriate discount rate firms may be able to sustain a cooperative equilibrium where they do not sabotage, using Nash reversion as the threatened punishment. (See Mas-Colell et al 1995, Ch12 AppendixA). Observation 8 relates to the regions of asymmetric sabotage costs in the figure. This could follow from uneven enforcement of fines, for example, linked to sabotage. What does this bode for cooperative, consistent, international competition policy? When we expect symmetric firms to drop into their Nash reversion strategies as $\alpha$ changes asymmetrically, what we have from observation 8 is the possibility for short-term gain from a deviation from a cooperative, symmetric enforcement regime, even though the symmetric enforcement regime implies higher welfare over time. Depending on discount rates, the threat of a non-cooperative set of strategies involving non-enforcement of anti-sabotage fines or punishment through raising $\alpha$ may
be enough to sustain a cooperative regime. In other words, one can certainly construct conditions sufficient for a cooperative set of national competition policies.

Observation 8 There is scope for global welfare improvement through an agreement to jointly police anticompetitive behavior. This depends on the parameter space. Side payments may be required.

Observation 9 Even in the case of symmetry, where there is clearly scope for a joint agreement to benefit both sides, the same prisoner’s dilemma problem exists as with the firms themselves. There are short-run benefits to be the cheater, from Figure 5, as profits are higher for the home firm.

Asymmetries in terms of firm cost, ownership, or consumer base can lead to a strategic competition policy being preferred by one country such that the non-cooperative equilibrium is clearly a dominant option. We examine such possibilities in the next subsection.

4.2 Asymmetries in firms and demand

Consider next the incentives for policing anticompetitive behavior when nationality plays an explicit role, either because firms differ systematically between countries $h$ and $f$ in terms of cost, or because one country has a disproportionate share of consumers relative to total production. We know from Figure 3 that under duopoly, we can have cases where home and foreign welfare are both increasing in sabotage costs $\alpha$. In such a case, home $h$ and foreign $f$ competition authorities would agree that aggressive policing, in the form of a realized increase in the sabotage cost coefficient (for example through fines)
will improve welfare in both countries. Indeed, from Figure 5 and observation 6, firms may themselves prefer external enforcement, when it is balanced. At the same time, there will also clearly be cases where national interests do not coincide, and where a non-cooperative policy regime is more likely. We consider two cases here.

First, consider, the case illustrated in Figure 2. Recall that this was a case with asymmetric firms in production cost space. Assume that firm 1 is a type-$h$ firm, and firm 2 is a type-$f$ firm. Also assume that consumers are split evenly between the two countries. For sufficiently low values of $\alpha$, the non-cooperative equilibrium will involve a home country monopoly, with the home firm monopoly able to keep the foreign firm out of the market because the sabotage equilibrium is one of guaranteed losses for the type-$f$ firm. As such, foreign consumers are forced to buy from the home monopoly, and the monopoly rents from foreign sales accrue to the home firm. Hypothetically speaking, this could again involve our imaginary computer operating system monopolist, based in the home country and selling in the foreign country. What if the foreign competition authority raises $\alpha$ enough to induce entry by the foreign firm? This could be done, for example, by declaring large fines on the home country operating system monopoly for any anticompetitive behavior. With a sufficient increase in $\alpha$, the foreign competition authority is able to induce the foreign producer to (re-)enter the market, as destructive competition vis-à-vis the home monopolist is less of an issue. The result is an increase in consumer surplus, and a shift in profits from home to foreign. Clearly, this benefits the foreign country. The home country may be hurt, if profits fall by more than the increase in consumer surplus. Indeed, unless sabotage is sufficiently precluded by the competition policy regime, then because
the two firms will otherwise engage in destructive behavior, we may have a
drop in global welfare and home welfare, even as foreign welfare rises.  

**Observation 10** Country- \( j \) competition authorities may benefit from having
a credible policy of policing anticompetitive behavior by a type- \( i \) (foreign) firm
even when there is only one firm and no actual sabotage taking place, if this
breaks the threat equilibrium such that a profitable producer then emerges. Con-
sumers will then gain in this scenario, even if the protected firm is foreign.
Things are even better for country \( j \) if this second firm is a type- \( j \) firm.

**Observation 11** With cost asymmetries, it may be that policing anticompet-
itive behavior is globally welfare reducing because it favors the market position
of the less efficient firm, while at the same time being nationally welfare im-
proving if it is the home of the less efficient firm.

Observations 10 and 11 are illustrated with Figure 6. \(^9\) The figure provides
a numeric example where the foreign country is home to the high cost firm.
Basically, in the range of low sabotage costs but positive production for both
firms (i.e. to the right of the monopoly range from Figure 2), the foreign
country gains from rising sabotage costs in a range where the home country is
hurt because of increased competition to its own firm. At the same time, the
expanded presence of the small, inefficient firm implies a range where world
and home welfare are falling in sabotage costs (identical in this case to stricter

---

\(^8\) While not explored here, seemingly innocuous national production subsidies can
also lead to a monopoly outcome because of the interaction with anticompetitive
behavior. Such production subsidies, in conjunction with sabotage options, may
drive the foreign firm out of the market. As such, we have yet another case where
domestic commitment to subsidize production might be an effective entry barrier
to the foreign firms.

\(^9\) The coefficient values in Figure 6 are \( a = 10, b = 0.1, c_1 = 1, c_2 = 1.05, \alpha_1 = \alpha_2 = 
3.75..30, p_z = 1. \)
Fig. 6. National and global welfare with asymmetric national firms

fines or other penalties from the competition authorities) while foreign welfare
in increasing.

As a second example, consider symmetric firms engaged in destructive com-
petition, as indicated in Figures 3 and 4. We can go beyond our discussion of
merger policy in Section 3. Indeed we will have a relatively rich set of prefer-
ences for national competition authorities in terms of both mergers and the
policing of anti-competitive behavior. Recall that in the example covered in Fig-
ures 3 and 4, both firms are type-$h$ firms, while consumers are split between
type-$h$ and type-$f$ consumers. In this case, while the home competition au-
thority will favor merger over policing of anticompetitive behavior, the foreign
competition authority will try to block a merger in the other country (as the
EU did in the GE-Honeywell merger) while opting instead for more rigorous
enforcement through fines or related penalties that drive up the sabotage cost
coefficient $\alpha$. These points are summarized by the following observations.

**Observation 12** National competition authorities in consumer countries, or countries where a relatively large share of domestic firm output is sold domestically, are more likely to favor policing the anticompetitive behavior of firms directly, favoring an increase in $\alpha$ over the alternative of a pro-competitive merger.

**Observation 13** With split ownership (type-$f$ and type-$h$ firms), competition authorities in the high cost country, all other things equal, will favor relatively strict punishment (through increases in $\alpha$) for anticompetitive behavior. The low cost country may prefer relatively less enforcement (as in the case where this leads to a home monopoly).

5 Firm Lobbying and Competition Policies

So far discussion has focused on welfare maximizing competition authorities. Following Helpman (1995) we note that many lobbying models can be represented, in reduced form, by the now standard political support function. While the emphasis has been on trade policy, we can also view the political weight terms $\gamma$ in equations (18) and (19) as a reflection of lobbying. How does this affect our basic results? The primary effect is an increase in the importance placed on profits. As profits already drive our results, many of our basic results remain unchanged, qualitatively. In terms of actual equilibrium policy sets, we can expect government policies that favor profits relative to consumer surplus gains. Hence, for example, in Figures 3 and 4 there will be a wider range of competition costs where mergers are favored over policing of
sabotage. In addition, with a greater weight on profits, where side payments are required to reach an agreement (as in Figure 4), these payments need to be larger when politics are introduced.

We can also look at the political weights in terms of state positions under a unified competition regime. A recent example is the EU Member State positions in the EU anti-trust case against Microsoft, and the position of various US states in a combined state-level antitrust case against Microsoft. (See Gilbert and Katz 2001 and Niels and ten Kate 2004). Controlling for consumer effects, the cynical view is that the position of various US states reflects the political weight of Microsoft, relative to other firms in the case, at the state level. In a sense, this is a version of the nationality case covered above. While the EU position on Microsoft vis-a-vis the US position on Microsoft similarly may relate to nationality as spelled out above in previous sections, the Bush administration decision to drop a substantial amount of the case reflects shifts in internal political weights.

6 Conclusions

The EU blocking of the GE-Honeywell merger, and the subsequent divergence between the U.S. and EU on the treatment of Microsoft, demonstrate that antitrust policy has become yet another arena offering the potential for beggar-othy-neighbor economic policy decisions and fundamental disagreements that preclude the international coordination of policy. The approach in this paper has been to develop a model of sabotage by international firms. Because firms sell into multiple markets, they fall prone to multiple competition regimes. The model has been used to examine the regulation of such firms by national
authorities. The bottom line of this analysis is that nationality matters. Indeed, even if national competition authorities are focused on national welfare maximization, with asymmetries across countries (big and small firms, exporting and importing countries) there is scope for basic disagreement with non-cooperative outcomes in policy space. This is similar to the results we have from the trade policy literature. When we introduce political weighting to the mix, such that industry profits carry disproportionate weight relative to consumers, the scope for non-cooperative outcomes widens. Basically, on an industry level, we can expect that fundamental disagreement may be a characteristic of the equilibrium policy set. Like trade policy, the hope for globally welfare improving approaches to competition may therefore require either side-payments or a balance of potential cases such that differences in demand and firm structures and nationality mean different rules will otherwise be followed in different cases.
References


