ECONOMIC INTEGRATION AND THE ELASTICITIES OF LABOUR DEMAND: ECONOMETRIC EVIDENCE FROM FINLAND

Elisa Riihimäki
University of Helsinki, Department of Economics
April 2004 (Preliminary and incomplete draft)

Abstract
By using theoretical model and empirical analysis, we investigate the effects of the economic integration on the elasticity of labour demand with own price. In a general theoretical model of intra-industry trade, we analyze how economic integration changes the labour-demand elasticity. We show that intensified trade competition increases the labour-demand elasticity, whereas better advantage of economies of scale decreases the elasticity of labour demand by decreasing elasticity of substitution between differentiated products. If integration gives rise to an increase in input-substitutability and/or outsourcing activities, labour demand will become more elastic. We test the idea whether European integration has changed the labour-demand elasticities in Finland using data from the manufacturing sector from 1975 to 2001.
1 INTRODUCTION

Economic integration is a process in which markets for goods and factors of production tend to become perfectly integrated. The competition on the location of capital and production is getting more and more tightened with globalization. As Rodrik (1998, 1999) argues, open economies, which are free to trade with each other, differ from closed economies in the respect that in particular capital and employers are internationally mobile.\(^1\) Liberalising financial markets and the programme of the European community for liberalising goods markets throughout Europe have already made considerable progress towards globalization. Liberalization of capital movements in the mid-1980s has effectively created one common market for financial capital. However, the local demand for capital is less than perfectly elastic, so capital is neither perfectly mobile nor perfectly immobile. As de Ménil (1999) has emphasized, there do appear to be significant differences in rates of return to capital within EU countries. Liberalising the capital market has been promoting the opportunities for multinational corporations to invest and establish production plants in countries where they are able to obtain labour more cheaply.\(^2\) The completion of the Single European Market, which was scheduled to have occurred by the 1992, was intended to complete the process of removing tariff and non-tariff barriers to trade among the countries of the European Union. The mobility of production is increasing as a consequence of product market integration. The progress of integration with the wider trade and capital flows will increase the competition between EU countries, which will reflect in the labour market. On the other hand, the firms with access to the wider market were expected to be able to expand sales and production to take better advantage of economies of scale while continuing to cover production costs despite lower price-cost margins.

The establishment of the European Monetary Union is asserted to strengthen this process of integration further via the increasing competition in the international product

\(^1\) On the other hand, as Osmundsen (1999) discusses, barriers to labour mobility have been lowered by the creation of the EU international market, and education and language skills have improved, implying enhanced international mobility of the workforce.

\(^2\) Wildasin (2000) explains that labour mobility contributing to either lower real wages or higher unemployment worsens especially the welfare of low skilled workers, which are easier to substitute with foreign workers.
and capital markets. As Calmfors (1998, 2001) argues, in the process of integration a common currency reduces the trade barriers (as both transaction costs and exchange-rate risks with international payments), and therefore leads to not only more trade, but also more foreign direct investment. The primary objective of European Monetary Union will be price stability, which forces countries to adjust to low inflation and to pay attention to firms’ competitiveness. Due to EMU, member-states lose the opportunity to make use of the exchange rate as an instrument to correct macroeconomic disequilibria. In particular, they cannot devalue their own currency so as to restore international price competitiveness. The loss of national adjustment variables, such as the exchange rate or the interest rate, will result in an increased need for alternative flexible mechanisms to correct possible asymmetric shocks between EMU-countries. Product demand will become more sensitive to price differentials between different countries and firms’ location decisions more responsive to relative labour costs. Burda (1999) speculates that if nominal price rigidity (correlation of nominal wage movements) in Europe is likely to increase, then real rigidities (correlation of real wage growth) are likely to decrease, as a consequence of EMU, which calls for labour market flexibility. This adjustment would help the region to improve its competitive position. Therefore, competitiveness pressure on the labour market towards greater flexibility is expected to increase under EMU as diminishing trade barriers.

Within the past few years, the effects of the European economic integration on the labour market have attracted wide interest. While there has been some increase in trade with countries outside the European area, it is a fact that the region remains fairly closed with a consolidated trade share of about ten percent of total GDP, whereas trade within the region has been rapidly increasing (see OECD 1999). The purpose of this study is to examine by using theoretical model and empirical analysis the impact of the economic integration on the elasticity of labour demand with own price. The empirical aim is to

3 EMU will eliminate the transaction costs incurred in exchanging currencies, make information less costly, and reduce political risk as the monetary policy is transferred on to the European Central Bank (see, e.g., de Ménil 1999, p. 185).
4 Currency devaluation can be used to reduce domestic costs in foreign-currency terms, thereby offsetting the loss in competitiveness (see, e.g., Rodrik 1998, p. 4).
5 In addition, as Andersen et al. (2000) explain, European countries may be affected differently by changes in inter-industry trade, which are more relevant for southern European countries, and intra-industry trade, which are more relevant for northern Europe.
determine whether European integration has increased or decreased the own price elasticities in Finland. The economic integration associating with market power can in theory increase or decrease labour-demand elasticity. With increased integration and competition firms with access to the wider market were expected to be able to expand sales and production to take better advantage of economies of scale. Thus, market power may arise from specialization in production and differentiation of products to establish segmented markets. This might in turn decrease the elasticity of labour demand. In contrast, for instance, Rodrik (1997) and Slaughter (2001) have emphasized the possibility, particularly in imperfectly competitive contexts, for the elasticity of demand for labour to be higher with greater openness. As Slaughter (2001) has pointed out, the link between factor demand elasticities and product market elasticities is directly established through Hicks-Marshall’s fundamental law of factor demand, which implies that “the demand for anything is likely to be more elastic, the more elastic is the demand for any further thing which it contributes to produce”. Since product market elasticities are likely to rise with integration, this implies that, with greater trade openness, we should see an increase in labour-demand elasticities as well. From this theoretical point of view, Panagariya (1999) shows that the Rodrik’s conjecture of a positive effect of globalisation on labour-demand elasticity is not a general result. As a consequence, the validity of the relationship has to be determined empirically.

First, the purpose is to examine the main channels through which the elasticity of labour demand is affected by international integration. We focus on how product market integration can change in theory the elasticity of labour demand. This general model of intra-industry trade specifies a theoretical framework of estimation for the elasticities of labour demand and determining the effects of economic integration on the elasticities. Intra-industry trade may be defined as the two-way exchange of goods in which neither country seems to have a comparative cost advantage. As Helpman and Krugma (1989) have pointed out, it is a phenomenon that first drew attention during the rapid expansion of trade in manufactured goods that followed the creation of the European Common Market. There are two major channels through which integration might affect labour markets, product markets and factor substitution. In regard to the demand for labour and capital we derive the own-price elasticity of labour demand, and derive substitution and scale effects for the elasticity of labour demand.
Second, we focus on the empirical work with the aim of determining the effect of European integration on the elasticities of labour demand. This has been tested using data from the Finnish manufacturing sector from 1975 to 2001. Our empirical work is closely related to tests of the Factor Price Equalization (FPI) theorem, although the theorem does not depend on substitution between inputs. The theorem according to which free trade and accordingly equalization of relative product prices across countries would imply that relative factor prices also have to be the same across countries, even in the absence of perfect factor mobility. Even when labour mobility is low, product market integration will force product price and factor price convergence for production factors of similar quality. When the mobility of capital is increasing as consequence of integration, domestic workers can be substituted by other factors, either through trade or through investing. The barriers to trade make the movements of labour and capital more costly and more risky, and prevent the complete equalization of factor prices.

The study is organized as follows. Section 2 focuses on identifying the main channels through which economic integration affects the labour-demand elasticities. It specifies a theoretical framework for empirical analysis. Section 3 presents the estimation model and the data. Section 4 presents the estimation strategy, and reports on the empirical results. A few concluding remarks and suggestions for future analysis are given in the last section.

2 THEORETICAL BACKGROUNDS

2.1 Theorems of international trade

The labour market effects of integration running via changes in relative factor supplies are captured by the Heckscher-Ohlin (HO) theorem. The Heckscher-Ohlin theorem of traditional trade models connects trade with factor supplies. The HO model identifies a mapping from exogenously given factor supplies and exogenously given external product prices determined in the international market place into internal factor prices, output levels and consumption levels, the difference between these last two items being international trade. (See, e.g., Leamer and Levinsohn 1995, p. 1345.) Thus, pressure on fac-
tor prices comes from trade with countries with dissimilar relative endowments. The empirical prediction of the HO model is that a country should be observed exporting the goods in which it has a comparative advantage and importing the goods in which it does not. However, Leontief (1953) observed that the US, which was at that time by far the most capital-intensive country in the world, was exporting relatively labour-intensive products. Another approach to testing the implications HO theorem is to see if the pattern of net exports within an individual country conforms to what would be expected on the basis of the relative factor endowment of that country. For example, using US data, Baldwin and Cain (1997) report estimates of relative comparative advantage as a function of factor shares across industries producing tradable goods. Their results suggest that the US tends to be a net exporter of goods and services that are relatively education-intensive.

The Stolper-Samuelson theorem, one of the HO models, connects factor prices with product prices. The theorem describes a mapping from prices determined externally in international markets to prices determined internally in local markets. The result applies if the external markets determine prices of commodities and the internal markets determine prices of factors. An increase in the relative price of good yields an increase in the real return to the factor used intensively in that good and a decrease in the real return to the other factor. The empirical prediction of the theorem is that under certain conditions the prices of individual factors across different countries would - in the absence of tariffs or other impediments to free trade - tend to equalize. Andersen (2001) has emphasized, according to the Stolper-Samuelson proposition, the relative wage of unskilled in European countries should decline if the integration process is associated with a decline in relative prices of commodities intensive in low skilled labour. The deteriorated situation for low skilled workers may more generally show up in the form of lower relative wages or a higher incidence of unemployment for low skilled workers in European

7 One of these assumptions is that the technology of the production of each good is identical in each country. Several papers (e.g., Trefler, 1993 and 1995; Davis et al., 1997; Harrigan, 1997) have revisited the HO prediction with specifications that allow for estimation of inter-country differences in technology to be an additional source of comparative advantage. The results of these studies, when technology differences are taken into account, are at least qualitatively consistent with the predictions of the HO model; countries tend to be net exporters of the services of the factors in which they are relatively abundant. An interesting aspect of Trefler (1995) is his conclusion that observed trade flows reflects also inter-country technology differences.
countries. Wage dispersion may be going up, as is the difference in employment across both skill and geographical dimensions.\(^8\)

If an economy’s relative endowment equals that of the rest of the world then when economies are more integrated they experience via the HO theorem no change in product prices and thus via the Stolper-Samuelson theorem no change in wages. But integration can make foreign factors more substitutable with the domestic ones. The Rybczynski theorem\(^9\) depends on substitution between inputs within sectors. The theorem connects output levels with factor supplies. It relates changes in endowments to changes in the pattern of production. Holding product prices fixed, an increase in the quantity of one factor will give rise to a more than proportional increase in the output of the good which uses that factor intensively and a reduction of the output of the other good. Then, pressure on the elasticities of labour demand comes from dissimilar relative endowments regardless of international trade. For example, using a panel data of two industries Harrigan (1995) explains production levels as functions of national factor endowments. The results suggest that capital is a source of comparative advantage in both industries; while skilled labour is a source of comparative advantage in one industry, and unskilled labour is a source of comparative disadvantage in both.

The Factor Price Insensitivity (FPI) theorem\(^{10}\) connects factor prices with factor supplies. Within a country, factor prices are altogether insensitive to changes in factor supplies, holding product prices fixed. Johnson and Stafford (1999) explain, according to the FPI-model, that changes in relative factor supplies have no effect on relative factor prices. The empirical study of Slaughter (1997) is close to a direct test of the FPI-theorem. The theorem according to which free trade and accordingly equalization of relative product prices across countries would imply that relative factor prices also have to be the same across countries, even in the absence of perfect factor mobility. The idea of Slaughter behind the test is that, as the U.S. economy became more open, the absolute elasticity of labour demand should have become larger. Although, as Andersen and Sørensen (2000) summarize, the theorem relies on a number of crucial assumptions of which one is that there is perfect competition in product markets. This assumption is

\(^8\) This depends on a trend towards more decentralized wage formation giving a larger role for wage setting at the firm level.

counterfactual for a number of products and factor price equalization does not necessarily follow from free trade. Market power arises among other things from specialization in production and differentiation of products to establish segmented markets. Another assumption is that the demand for labour in integration is infinitely elastic. This requires that factor supply variation is too small to take the country into a different range of specialization. In addition, the FPI-theorem with the HO theorem and the Stolper-Samuelson theorem do not depend at all on substitution between inputs within sectors.

2.2 A Model of the Elasticity of Labour Demand and Product Market Integration

We will structure a general theoretical model of intra-industry trade to capture the effects of product market integration\(^{11}\) on the elasticities of labour demand. The focus is on how the process of integration may reflect via the removal of barriers with international trade, substitution, and outsourcing in the labour-demand elasticities. We consider an open economy where there are many firms at industry level producing differentiated good \(Y_j\) with capital \(K_j\), skilled labour \(L_{jS}\) and unskilled labour \(L_{jU}\) as inputs. Capital and skilled labour are mobile across countries, while unskilled labour is immobile. Supposing that product markets are imperfectly competitive, there is monopolistic competition in good markets adapting the model of Dixit and Stiglitz (1977) where there is assumed to be no strategic (Bertrand or Cournot) interaction between firms.\(^{12}\) The structure of this general model is such that consumers demand a variety of differentiated products.

Representative consumer’s tastes are assumed represented by the utility function

\[
V = b \frac{1}{\theta} D^\theta
\]

\(^{10}\) See, e.g., Leamer and Levinsohn 1995, p. 1354.

\(^{11}\) An integration process is implying more integration across product markets.

\(^{12}\) This approximates a situation in which there are a large number of varieties and each firm has some power over the pricing of its product.
where D is an index of consumption of the differentiated products, and b is the positive constant. A consumer maximizing\(^\text{13}\) will set

\[
D = \left(\frac{P^*}{b} \right)^{-\frac{1}{1-\theta}}
\]

where $\varepsilon = \frac{1}{1-\theta} > 1$ is the product-demand elasticity, and P^* represents an index of the price level in terms of international integration. The product-demand elasticity can be thought as an increasing function of the number of products $\varepsilon = \varepsilon(n)$, where $\varepsilon'(n) > 0$, and n is the number of products/firms. An increase in the number of firms leads to an increase in the degree of competition. The demand of products type i is given as

\[
D_i = D \left(\frac{p_i}{P^*} \right)^{-\phi} = a p_i^{-\phi} P^{\phi-\varepsilon}
\]

where p_i represents the price of variety i with $\phi > 1$ denoting the elasticity of substitution between any two products types (see Helpman and Krugman 1989). The industry’s elasticity of substitution among differentiated goods can be thought as a decreasing function of the advantage of economies of scale $\phi = \phi(a_j)$, where $\phi'(a_j) < 0$, and $a_j = \frac{A_i}{A_j}$ is the comparative advantage of domestic industry’s production relative to foreign. A growth in the advantage of economies of scale in industry leads to a decrease in the degree of substitution among differentiated goods within industry.

Consider now the impact of a reduction in marginal trade costs on product markets. Let τ_j denotes a trade cost due to transactions costs and other trade barriers related to

\(^\text{13}\) Each consumer maximises their utility function (2.1) subject to the budget constraint. The budget constraint simply requires that the value of expenditure is not more than value of the income.
foreign trade14 at industry j. The effects on imperfectly competitive product markets of increased integration via declining trade costs are basically of two counteracting sorts. Hence, it turns out to vary competition by varying both advantage of economies of scale holding ϵ_j constant, and number of firms holding ϕ_j constant. First, individual producers with access to the wider market were expected to be able to expand production to take better advantage of economies of scale (a_j). This has associated to reduced market imperfection and to increased incentive of product-differentiating. Hence, we assume that

\begin{equation}
\frac{\partial \phi_j}{\partial a_j} \frac{\partial a_j}{\partial \tau_j} > 0.
\end{equation}

Second, market entry becomes easier and/or less costly implying that more goods become traded goods (n_j). With increased integration and competition, an industry’s market share becomes increasingly sensitive to price changes raising the elasticity of the consumption price. Thus, we have

\begin{equation}
\frac{\partial \epsilon_j}{\partial n_j} \frac{\partial n_j}{\partial \tau_j} < 0.
\end{equation}

The higher the degree of price competition is, i.e., the closer substitutes the good sale on the world market is, the more elastic with respect to own price output demand becomes. On the other hand, if the initial competitiveness of domestic industry is much better than the competitiveness of foreign industry, an increase in the degree of competition tends to give rise to a higher supply taking better advantage of economies of scale.

In the imperfect competition, we have then the condition of pricing rule for products types at industry j

14 For simplicity, we assume that the trade costs of import and export outputs are equal.
\[P_j^* \geq \left[\sum_{i=1}^n \left(\frac{1}{a_j} \frac{(1+\tau_i)}{P_{ij}^{1-\phi_i}} \right) \right]^{1/\phi_j}. \]

In optimum, the price equals to the marginal revenue from exporting, where we must have that relative trade cost equals to mark-up factor i.e. \(\frac{1+\tau_j}{a_j} = \frac{\phi_j + \varepsilon_j}{\phi_j + \varepsilon_j - 1} \). We summarize the characterization of the optimal pricing rule in

Proposition 1 Lower trade costs with increased integration, higher number of firms and in consequence of its higher elasticity of product demand will reduce the mark-up price, whereas better advantage of economies of scale and in consequence of its lower elasticity of substitution between differentiated products will raise it, ceteris paribus.

Furthermore, international integration gives access to foreign factors of production as well as domestic ones, either directly in foreign affiliates or indirectly through intermediate inputs. As Burda and Dluhosch (2000) discuss, the removal of barriers to trade and mobility between countries will increase incentives for firms to economize on variable costs by outsourcing or fragmenting the production process. In this sense, an enlarged market associated with trade can drive an endogenous evolution of technology, which in turn affects the factor markets. A change in capital costs affects together with labour costs on the firms’ price setting. The firm considers the gross interest rate of industry \(\tilde{r}_j \) as given. It is given by the net-of-tax interest rate plus a capital tax, i.e. \(\tilde{r}_j = (1 + t_r)r_j \) with \(t_r \) denoting the capital tax rate.\(^{15}\) The gross wage of industry \(\tilde{w}_j \) consists of the net-of-tax wage\(^{16}\) plus the social security contributions \(t_w \), so that \(\tilde{w}_j = (1 + t_w)w_j \). Let the costs of outsourcing activity for industry \(j \) be denoted \(\lambda_j \), and assume that these

\(^{15}\) Other capital costs are mainly the depreciation of capital.

\(^{16}\) A rise in income tax increases the labour costs when a rise of income tax is compensated by an increase in the negotiated wages.
costs have a cumulative distribution function given by ψ_j. Then it is profitable for the firm to outsource if

$$\frac{\tilde{w}_j}{r_j} > \lambda_j$$

which applies for a fraction

$$\psi_j(\lambda_j, \tau_j) = Pr\left(\frac{\tilde{w}_j}{r_j} < \lambda_j\right)$$

which is parameterized on trade costs (τ_j) reflecting the effect of increased integration on the switching costs of outsourcing. Hence, we have

$$\frac{\partial \psi_j}{\partial \lambda_j} > 0,$$

$$\frac{\partial \psi_j}{\partial \tau_j} > 0.$$

The first inequality is implying that input-share become more sensitive to the relative input-price, when the switching costs of outsourcing are decreased. The second inequality is saying that more integration (lower trade costs) for a given relative input-price (switching costs) increases the share of firms choosing an outsourcing.

Assuming that linear-homogenous technology can be represented by CES (constant elasticity of substitution) cost function form and strong separable between unskilled and skilled labour, the total cost function

17 As Wildasin (2000) argues, capital and labour are not actually homogeneous factors of production, but rather aggregates of many specific types of inputs. Firms cannot without costs alter the stocks of capital and labour. The adjustment of production in response to shocks in the product market incurs costs because it is costly to replace plant and equipment, and to hire new workers.

18 The CES function exhibits constant returns to scale. However, intra-industry trade may give rise to take advantage of economies of scale in production.
can be specified as sum of sub-CES cost functions of the form

\begin{equation}
C_j = \sum_{g} C_{jg}
\end{equation}

\begin{equation}
C_{jg} = Y_j \left[\psi_{jg} W_{jg}^{1-\sigma_{jg}} + (1 - \psi_{jg}) V_{jg}^{1-\sigma_{jg}} \right]^{\frac{1}{1-\sigma_{jg}}}
\end{equation}

where \(j \) and \(g \) refer to industry and input group, respectively; the industry \(j \)'s elasticities of substitution between capital and unskilled or skilled labour are denoted \(\sigma_{jg} \); and \(\psi_{jg} \) can be defined an index of augmenting technological change which is related to international outsourcing. The elasticity of substitution is defined as the effect of a change in relative factor prices on relative inputs of these two factors, holding output constant (see Allen 1938, or Hamermesh 1993). The cost function is linear homogeneous which implies that it is homothetic i.e., factor demand is such that the ratio is factor inputs is independent of scale at each factor-price ratio. The CES function allows values \(\sigma_{jg} \geq 0 \).

If the elasticity of substitution is great, as labour costs rises relative to capital costs, labour will be substituted for capital.\(^{20}\)

Each single firm at industry \(j \)'s level faces a downward sloping demand curve

\begin{equation}
Y_j = D_j(p_j) = P_j^{-(\theta_j + \varepsilon_j)}.
\end{equation}

\(^{19}\) Empirical studies usually point to a lower degree of substitution between skilled labour and capital than between unskilled labour and capital. The integration forces changing labour substitutability by making labour less/more easily substituted for foreign factors of production depending on complementarity between human capital and physical capital (see, e.g., Skaksen and Sørensen 2002, or Feenstra and Hanson 2001). However, as Hamermesh (1993) discuss, the difficulty with the production function \(Y = F(H(L_u, L_s), K) \) is that the aggregation of labour inputs by the function \(H \) is an arbitrary description of technology. If the labour sub-aggregates are not separable from capital, one will underestimate own-price demand elasticities, and infer that the types of labour are greater price-substitutes that in fact they are. Because of this problem of the separable of inputs I estimate also the elasticities of total labour demand.

\(^{20}\) When there is a rise in the labour costs, the relative price of capital in terms of labour in this industry will decline i.e. capital here will be relatively cheap. As a result competitive forces will lead to the adoption of more capital-intensive techniques of production than elsewhere. In case of a unitary elasticity of substitution, the capital/labour ratio will also change by equal percentages as the factor-price ratio. If the
The firm maximizes profits, which are given by

\[(2.14) \quad \Pi_j = p_j(Y_j)Y_j - \tilde{w}_j L_j - \tilde{r}_j K_j.\]

The closer substitutes for output \(Y_j\) on the international market are, the more elastic output demand becomes. Profit maximization implies that the firms will set a price, which exceeds the marginal cost by a constant mark-up factor, i.e. \(\frac{\phi_j + \varepsilon_j}{\phi_j + \varepsilon_j} > 1\). In a process of integration, there are pressures for the mark-ups to decline with increasing elasticity of product demand. On the other hand, a decrease in the product-substitution elasticity may compensate this effect.

Profit maximization with respect to labour yields the conditional labour demand function

\[(2.15) \quad L_{jk} = \psi_{jk} Y_j \left[\psi_{jk} \tilde{w}_j^{1-\sigma_k} + (1 - \psi_{jk}) \tilde{r}_j^{1-\sigma_k} \right]^{\frac{\sigma_k}{1-\sigma_k}} \tilde{w}_j^{\sigma_k}.\]

Linear homogeneity of (2.12) implies that marginal cost is constant in \(Y_j\) so that the group \(g\)’s cost function can be written as \(C_{jk}(\tilde{w}_{jk}, \tilde{r}_{jk}, Y_j) = c_{jk}(\tilde{w}_{jk}, \tilde{r}_{jk}) Y_j\) at industry \(j\). The shares of labour and capital cost in total costs are defined for group \(g\)

\[(2.16) \quad s_{jk} = \frac{\tilde{w}_{jk} L_{jk}}{c_{jk} Y_j},\]

elasticity of substitution is less than one, an increase in the price of labour must induce firms to use more capital, but the increase in the use of capital is not equal relative to an increase in the labour-price.

\[21\text{ Applying one of the four Hicks-Marshall laws of derived demand, the demand for anything is likely to be more elastic, the more elastic is the demand for any further thing, which it contributes to produce (Hicks 1966, p. 242).}\]

\[22\text{ Whenever an economy faces a larger number of firms in an integrated world market, trade itself leads to a decline in the mark-ups. Hence, the degree of competition tends to increase when more goods become traded. By increasing competition facing individual firms in product markets, it is intended that firms should lower their mark-ups of prices over marginal costs. For instance, Hoon (2001) has affirmed that as domestic and foreign firms compete in the markets for traded goods, there are pressures for the mark-ups to decline.}\]
(2.17) \((1 - s_{jg}) \equiv \frac{\widetilde{r}_{jg} K_{jg}}{c_{jg} Y_j} \)

with \(c_{jg} = c_{jg}(\tilde{w}_{jg}, \tilde{r}_{jg}) \) denoting group \(g \)'s unit and marginal cost of production at industry \(j \). Marginal cost depends on the gross factor prices only. Labour demand is affected by the share of labour in total costs. If this share is low, then a percentage increase in labour costs will have a smaller impact on total costs than, if the share of labour is large (see, e.g., Booth 1995, p. 58). The own-price elasticity of labour demand can be derived (see Allen 1938, or Hamermesh 1993) as

(2.18) \[\eta_{LL_{jg}} = \frac{- (1 - s_{jg})}{(1 - \psi_{jg})} \sigma_{LL_{jg}} - \frac{s_{jg}}{\psi_{jg}} (\phi_j + \epsilon_j) - \eta_{\psi_{jg}} \]

where

(2.19) \[\eta_{\psi_{jg}} = - \left(\frac{\partial \psi_{jg}}{\partial \tilde{w}_{jg}} \frac{\tilde{w}_{jg}}{\psi_{jg}} \right). \]

In equation (2.18), \(\eta_{LL_{jg}} \) is industry \(j \)'s elasticity of labour demand with own price for group \(g \); \(\sigma_{LL_{jg}} \) is group \(g \)'s elasticity of substitution between labour and capital at industry \(j \); \(\eta_{\psi_{jg}} \) is industry \(j \)'s elasticity of outsourcing with the price of labour type \(g \); \(\phi_j \) is the elasticity of product substitution, and \(\epsilon_j \) the elasticity of product demand for industry \(j \)'s output market. Equation (2.18) consists of three parts. The first part tells, for a given level of output, how much firms substitutes away from labour type towards capital when labour costs rise. For example, an increase in social security contributions shifts the labour demand curve inward by increasing the cost of labour (see, e.g., Pissarides 1997, p. 5). As Holmlund et al. (1989) explain, if there is complete nominal

\[\text{23 Similarly, capital demand is affected by the share of capital in total costs.} \]
wage rigidity, employment takes the whole burden of adjustment.24 The second part of equation (2.18) tells how much industry’s labour demand changes after a labour cost change in response to the change in the industry’s output. For example, higher (lower) wages imply higher (lower) costs and thus, moving along the product-market demand schedule, lower (higher) industry output. The third part tells how much an increase in the wage costs gives rise to a switch towards more outsourcing. In summary, when labour costs have arisen, the industry substitutes away from labour towards capital or switch towards more outsourcing, and with higher costs the industry produces less output such that it demands less all factors.25

In theory, economic integration can change the elasticities of labour demand without changing labour prices. Differentiating of equation (2.18) with respect to trade costs it gives the effect of increased product market integration on the labour-demand elasticity

\begin{equation}
\frac{\partial \eta_{LL,j}}{\partial \tau_j} = -\frac{(1-s_{jr})}{(1-\psi_{jr})} \frac{\partial \sigma_{jr}}{\partial \tau_j} - s_{jr} \left(\frac{\partial \phi_j}{\partial a_j} \frac{\partial a_j}{\partial \tau_j} + \frac{\partial \psi_j}{\partial n_j} \frac{\partial n_j}{\partial \tau_j} \right) - \frac{\partial \eta_{w\theta,j}}{\partial \tau_j} \\
\quad + \left[s_{jr} (\phi_j + \varepsilon_j) (1-\psi_{jr})^2 + \sigma_{jr} \psi_{jr}^2 \right] \frac{\partial \psi_{jr}}{\partial \tau_j} + \left(\sigma_{jr} \psi_{jr}^2 (1-\psi_{jr}) \right) \frac{\partial \psi_{jr}}{\partial \tau_j}.
\end{equation}

In the process of integration international trade can increase the elasticity of labour demand through the elasticity of substitution between labour and capital which is captured by the first term on the right hand side of equation (2.20). In consequence of decreased trade costs (τ_j) as industry j’s substitutability increases (i.e., $\sigma_{LL,j}$ rises), labour demand becomes more elastic (i.e., $\eta_{LL,j}$ falls). The smaller is labour’s share in the firm’s costs (s_{jr}), the stronger is the pass-through from the elasticity of substitution to the elasticity of labour demand. In other words, higher wages trigger the larger (smaller) changes in the quantity of labour demanded the less (more) important labour is in total costs. As Rodrik (1997) argues, the increasing mobility of capital means that the de-

24 If there is correspondingly complete nominal wage flexibility, the increase in social security contributions is completely shifted back on wages.

25 Similarly, a cut in social security contributions shifts the labour demand curve to the right. Both real wages and employment rise but how much is the impact on wages and employment depends on the own-price elasticity of labour demand.
mand for labour will generally be more responsive to changes in the factor prices. Firms can substitute other factors of production for immobile workers more easily by investing. However, if the industry is specialized in the skill-intensive sector, the own-price elasticity of labour demand should be lower in that industry as in the industry that specializes in the unskilled labour intensive good. Then, the shifts in the production technology or an increase in the use of physical capital has also required that workers acquire new skills which increase the demand for human capital (i.e., $\frac{\partial \sigma_{LL}}{\partial \tau_j} > 0$) and thus decrease the elasticity of skilled labour demand.

Another substitution effect is the incentive to outsource which is captured by the third and last terms on the right hand side of equation (2.20). By using equation (2.10), in consequence of decreased trade costs (τ_j) it follows that as industry j’s outsourcing becomes more elastic (i.e., ψ_{jg} rises) and the probability of outsourcing increase (i.e., η_{Lj} falls) labour demand becomes more elastic (i.e., η_{LLj} falls). The smaller is the share of labour-input costs the stronger is the pass-through from the outsourcing-probability to the elasticity of labour demand. Integration thus expands the set of factors industries can substitute indirectly towards in response to higher domestic wages beyond just domestic non-labour factors to include foreign factors as well. Whereas, in the skill-intensive industry, when the elasticity of substitution between skilled labour and capital is small ($\sigma_{LL} < 1$) with high share of labour-input costs (s_{jg}) and initially low out-

26 Generally, the demand for any factor of production becomes more elastic when the others can respond to changes in the economic environment with greater ease (Rodrik 1997, p. 17). As the costs of capital mobility fall via the removal both of exchange rate risks and the costs of transaction, capital owners are more sensitive to move their capital to a country where it earns higher return. As Rodrik and van Ypersele (2001) explain, in the process of integration real and financial capital are more sensitive to respond to shocks such as changes in productivity or the terms of trade. A negative shock at home may induce a capital outflow abroad. A capital outflow is also liable to affect the marginal productivity of labour, in turn leading to effects on the wages (see, e.g., Keen and Marchand, 1997). An increase in capital productivity tends to increase relative labour costs, which may encourage shifting production determining by higher productivity. Particularly in production with low-skill workers employers can react sensitively to changes in prevailing wages by investing.

27 In the case of labour demand with several inputs, adopting more capital-intensive production will decrease the demand for low-skilled workers and increase the demand for educated workers. Then, a rise in the cost to employers of using the physical capital will decrease the demand of educated workers used at each level of production. In case of complements, the elasticity of substitution is low so that a rise in the price of capital also leads to a decrease in employment.
sourcing-probability (ψ_{js}) the effect of increased outsourcing-elasticity on the labour-demand elasticity can be compensated partly by the effect of increased outsourcing-probability because of its sign is then negative. The intuition of this counteracting effect of outsourcing is that labour costs become a relatively more important cost-component when a larger fraction of activities are outsourced. We summarize the substitution effects of integration in

Proposition 2 Lower trade costs with increased integration, higher elasticity of substitution between labour and capital and/or higher elasticity of outsourcing with higher probability of outsourcing will increase the elasticity of labour demand.

So an integration process should increase the substitution, directly or indirectly, and economic integration should tend to further increase the elasticity of labour demand, especially unskilled.

If product markets are imperfectly competitive, integration can also make product markets more competitive via international trade. Several models of imperfect competition predict that trade liberalization makes demand more elastic, but not infinitely so.\(^\text{29}\) The market shares of a domestic supplier and a foreign supplier become more sensitive to the relative price, when economies are more integrated. International integration reducing trade frictions and therefore making it easier to shift supplier can have potentially large effects on product-elasticities. Rodrik (1997) argues that, since the demand for labour is a derived demand, which varies proportionately with the elasticity of demand for goods, the integration of goods markets alone makes the demand for domestic labour more elastic because of declining mark-ups.\(^\text{30}\) Trade flattens the demand curve

\(^{28}\) Slaughter (2001) emphasizes that industries need not actually access foreign factors, the ability to do so is sufficient to increase the elasticity of labour demand.

\(^{29}\) In a perfectly competitive international market the output price decreases as the demand decreases, and firms take the market price of output as given. Supposing decreasing returns to scale, each firm decreases labour demand to the level where price equal marginal cost (see, e.g., Varian 1992, pp. 215-216). The models of international trade (e.g., Heckscher-Ohlin model) with perfectly-competitive product markets have the extreme result of infinitely-elastic product demand and thus infinitely-elastic labour demand.

\(^{30}\) Also, increased information allows firms to respond more effectively to costs differences. Increased comparability means that the labour market impact of changes in profits increase and thus the elasticity of labour demand increases. (See Rauch and Trindade 2000, p. 7.)
for labour and increases the elasticity of demand for labour. However, by using (2.4) and (2.5), differentiation (2.20) shows that in consequence of decreased trade costs (τ_j) as number of products/firms raise (n_j) industry j’s product demand becomes more elastic (i.e., ε_j rises), so does labour demand (i.e., η_{LLj} falls), while as advantage of economies of scale raise (a_j) product substitution becomes less elastic (i.e., ϕ_j falls), so does also labour demand (i.e., η_{LLj} rises). The larger is labour’s share in costs, the stronger is the pass-through from the elasticities of product to the elasticities of labour demand. The number of firms (both domestic and foreign) competing in this industry can arise as a result of integration process, which shifts the foreign output mix towards this industry. An integration process can force domestic firms to face heightened foreign competition. An increase in the elasticity of product demand triggered by more firms increases the elasticities of labour demand. Product demand becomes more price elastic when product markets are more integrated, but is the effect of product market integration on the price sensitivity of the market share larger than its direct effect on the market share. For example, individual industry with access to the wider market might be able to expand sales and production taking better advantage of economies scale which can be associated to decreased market imperfection and thus decreased labour demand elasticities. Because of these counteracting effects we cannot conclude that the scale effects of integration tends to increase the labour-demand elasticities. We summarize the scale effects of integration in

Proposition 3 Lower trade costs with increased integration, higher number of firms and in consequence of its higher elasticity of product demand will increase the elasticity
of labour demand, whereas better advantage of economies of scale and in consequence of its lower elasticity of substitution between differentiated products will decrease it.

Finally (2.20) reveals the following result

Corollary 1 If \(\frac{\partial \phi_j}{\partial a_j} \frac{\partial a_j}{\partial \tau_j} < \frac{\partial \epsilon_j}{\partial n_j} \frac{\partial n_j}{\partial \tau_j} \) and \(\frac{\partial \sigma_{\lambda \lambda}}{\partial \tau_j} < 0 \), then \(\frac{\partial \eta_{\lambda \lambda}}{\partial \tau_j} > 0 \).

In summary, the labour-demand elasticity involves two different – substitution and scale - effects of an increase in the degree of integration. In the present set-up, economic integration can change the own-price elasticity of labour demand by increasing/decreasing either both of the product elasticities, demand and substitution, or the elasticity of direct substitution between factors of production and outsourcing activities.

The process of integration reduces the trade barriers, and therefore leads to not only more trade, but also more foreign direct investment. Increased trade, outsourcing, and investment opportunities make firms more sensitive to changes in such costs. When unskilled labour is immobile, and the mobility of other factors is increasing as consequence of integration, workers can be substituted by other workers across national borders, either through trade or through outsourcing. Then, integration can make labour demand more elastic either by making output markets more competitive or by making domestic labour more substitutable with foreign factors. However, the effect of integration on the price sensitivity of the market share may be compensated by its direct effect on the market share, i.e. industry’s market power can arise from specialization in production and differentiation of products being able to take better advantage of economies scale with segmented markets. In addition, if the industry is specialized in the skill-intensive sector, the shifts in the production technology or an increase in the use of physical capital has also required that workers acquire new skills which increase the demand for human capital making labour demand less elastic. Thus, the effect on labour-demand elasticities of increased integration is more empirical question.

Previously, we considered the labour demand at the industry level. Slaughter (2001) argues that industry elasticity and a national elasticity of labour demand are two concep-
tually distinct ideas. Both elasticities arise from the profit-maximizing input choices of firms. But industry elasticity describes how the quantity of labour demanded by a single industry responds to a labour cost change, which is exogenous to that industry. Leamer (2000) has emphasized that a national elasticity describes how endogenously determined national wages respond to an exogenous change in labour supply. A sufficiently diversified small open economy may have a national labour demand that is infinitely elastic. For this economy a change in the national labour supply does not change national wages. Conversely, a large country producing a single product under a very flexible technology could have nearly infinite elasticities of labour demand at the industry level but a rather inelastic national elasticity of labour demand. Next, we concentrate on issue whether integration has made labour demand more elastic for industries, not for Finland overall.

3 ECONOMETRIC MODEL

3.1 Stage-one regression equations

To estimate constant-output ($\beta = 1$) elasticities for each industry-year and labour types we use restricted ordinary least squares estimation (OLS)

$$\Delta \ln(L_{g_jp_t}) = \alpha_{g_j} \Delta \ln(\omega_{g_jp_t}) + \mu_{p_t} \Delta \ln(\Psi_{p_t}) + \beta_{p_t} \Delta \ln(Y_{p_t}) + \epsilon_{p_t} \tag{3.1}$$

where L is quantity of labour employed, ω real labour costs, ψ capital costs, and Y real output. To estimate scale effect labour-demand elasticities we use instrumental variables estimation (IVE)

$$\Delta \ln(L_{g_jp_t}) = \Phi_{g_j} \Delta \ln(\omega_{g_jp_t}) + \mu_{p_t} \Delta \ln(\Psi_{p_t}) + \beta_{p_t} \Delta \ln(Y_{p_t}) + u_{p_t} \tag{3.2}$$

33 The converse of asking, as we have, what happens to the choice of inputs in response to an exogenous shift in a factor price is to ask what happens to factor prices in response to an exogenous change in factor
We use two different control variables: Finland’s exports to the EU-countries and output in the European Union which are deflated by a real competitiveness indicator. The scale effect (β) measures the impact of international demand shock on labour demand. If both scale (Φ) and constant-output (α) elasticities are consistently estimated, then the difference between these two is an estimate of the scale effect, and it would provide indirect evidence about the competitiveness of product market.

To estimate constant-substitution ($\chi = 1$) labour-demand elasticities we use restricted ordinary least squares estimation (OLS)

$$\Delta \ln(L_{gtp}) = \rho_{gtp} \Delta \ln(\omega_{gtp}) + \mu_{gtp} \Delta \ln(\Psi_{gtp}) + \chi_{gtp} \Delta \ln(K_{gtp}) + e_{gtp}$$

where K is capital. To estimate substitution effect labour-demand elasticities we use instrumental variables estimation (IVE)

$$\Delta \ln(L_{gtp}) = \Gamma_{gtp} \Delta \ln(\omega_{gtp}) + \mu_{gtp} \Delta \ln(\Psi_{gtp}) + \chi_{gtp} \Delta \ln(K_{gtp}) + u_{gtp}$$

We use two different instruments: the intermediate inputs that are imported from EU-countries (foreign outsourcing) which are deflated by a real competitiveness indicator and the investment of EU countries. If both substitution (Γ) and constant-substitution (ρ) elasticities are consistently estimated, then the difference between these two is an estimate of the substitution effect, and it would provide indirect evidence about the international outsourcing activities.

3.2 Stage-two regression equations

In the regression model of stage-two, we regress estimated elasticities on several plausible measures of integration (international trade, and technology factors) using weighted-least squares estimation (WLS)

supply. The elasticity of complementarity measures the percentage responsiveness of relative factor prices to a one percent change in factor supplies in the long run. (See Hamermesh 1986, p. 434.)
(3.5) \[(PED)_{glt} = \alpha + \sum_k b_k (Integration factors)_{jk} + \sum_j \gamma_j (ID_j) + \sum_T \phi_T (TD_T) + e_{gt} \]

where \((PED)_{glt}\) is estimated labour-demand elasticities, \((ID_j)\) set of industry dummies, and \((TD_T)\) set of time dummies. We estimate (scale and substitution effect) using possible combinations of explanatory factors, each from a different category (competitiveness, trade etc.) and each individually with different possible combinations of (time and industry) controls.

(To be completed)

4 ESTIMATION RESULTS

4.1 Literature survey

An interesting attempt to test for the labour market implications of changes in the degree of openness is Slaughter (1997). Slaughter’s (1997) study is the first to estimate the time patterns for U.S. elasticities of labour demand and then correlate these estimates with measures of international trade. The paper comes close to a direct test of the FPI-theorem. The idea behind the test is that, as the U.S. economy became more open from 1960 to 1991, the absolute elasticity of labour demand in individual industries should have become larger. Richardson and Khripounova (1998) also estimate the time pattern of U.S. labour demand elasticities, but their approach is patterned after the regressions of Slaughter. Slaughter’s empirical work yields three main results. First, demand for production labour became more elastic in manufacturing overall and in five of eight industries within manufacturing. Second, the demand of non-production labour did not become more elastic in manufacturing overall or in any of the eight industries within manufacturing. Third, the hypothesis that trade contributed to increased elasticities has mixed support, at best. The time series of elasticities of labour demand are explained largely by a residual, time itself. Richardson and Khripounova (1998) search for linkages between the growing integration of U.S. markets with the global economy (de-
termined by different trade conceptions) and the apparent decline in the market power of the American workers (determined by elasticity of labour demand). Their regressions are specified as closely as possible to the regressions of Slaughter. They considered not only production and non-production workers, but also workers of different education. Conclusion of their research is that from 1984 through 1991 growing global integration weakened the market power of less-skilled workers relative to more-skilled, and probably relative to employers. But they did not find that globalization weakens the market power of more skilled workers.

Andersen, Haldrup, and Sørensen (2001) estimate time varying employment relations in the manufacturing sector for EU countries over the period 1970 to 1999. Their empirical analysis of employment takes explicitly into account that international integration changes the elasticity of labour demand. The empirical model is non-structural in the sense that the sources that potentially cause elasticities over time cannot be identified. They suppose that the various channels of integration have qualitatively different effects on the elasticity of employment, i.e. the effects running via product markets and via possibilities for outsourcing may run in opposite direction in respect to the level of employment. Their preliminary results support the approach of not treating the parameters of labour demand as constant. Krishna, Mitra and Chinoy (2001) test the impact of trade liberalization on the elasticities of labour demand using Turkish manufacturing plant-level data from years 1983-1986. The 1984 import liberalization program significantly reduced both tariff and non-tariff barriers in Turkey. They use the volume of import, estimates of protection (tariff and non-tariff) change, and Levinsohn’s (1993) estimates of mark-up changes as basic measures of trade liberalization. The results suggest that the linkage between greater trade openness and labour demand elasticities may be empirically quite weak.

34 A later version of this paper has been published (2001) in the Journal of International Economics.
35 Levinsohn (1993) and Harrison (1994) use firm-level data to study how trade liberalization affects the competitiveness of product market in manufacturing. Levinsohn (1993) finds using Turkish data from 1983 to 1986 that after trade liberalization, the demand of product market became more elastic. Using a panel of manufacturing firms in the Ivory Coast, Harrison (1994) presents evidence on that the impact of liberalization on competition leads to biased estimates of the relationship between trade reform and productivity growth. Neither study links these developments of product market to labour markets.
Haffner, Nickell, Nicoletti, Scarpetta and Zoega (2000) do not focus on the elasticities of labour demand, but they do address how the competitiveness of product market affects wages and/or employment. Revenga (1992) investigates the effect of increased import competition on U.S. manufacturing employment and wages, using data on a panel of manufacturing industries over the period 1977-1987. The empirical analysis uses industry import price data and an instrumental variables estimation strategy. The estimates suggest that changes in import prices have a significant effect on both employment and wages. Abowd and Lemieux (1993) study how international price competition affects the negotiated wage settlements and employment. Their data include a sample of Canadian collective bargaining agreements from 1965 to 1983. They conclude that standard estimates of rent-sharing based on contract data seriously underestimate the impact of product market competition on negotiated wage settlements. Borjas and Ramey (1995) study how foreign competition reduces firms’ power in the product market and thus labour rents. They suppose that the impact of foreign competition on the relative wages of less skilled workers depends on the market structure of the industry penetrated. The empirical evidence indicates that employment changes in a small group of trade-impacted concentrated industries can explain not only part of the aggregate rise in wage inequality in the United States, but also some of the differences in the trends in wage inequality in overall. Driffill et al. (1998) investigate how a reduction in non-tariff barriers effects on wages using a cross-section of UK manufacturing data set from the 1990s. They suppose that when economies become more integrated through the removal of tariff and other barriers to trade, resulting in an increase in competition in product markets, there should be effects on wage and employment outcomes in labour markets, particularly those in which unions are active. Their results show that a reduction in non-tariff barriers from high to medium level appears to have a negative effect on wages, both for union and non-union establishments, but particularly for unskilled workers. Burda (1999) surveys the effects of EMU on the functioning of labour and product markets and the relative importance of real and nominal rigidities. He finds empirical evidence of increasing nominal rigidities and decreasing real rigidities within EMU countries using 1961-1996 data. The results support that the real rigidities in labour markets will come under increasing pressure from integration. Boeri, Nicoletti and Scarpetta (2000) identify the impacts of changing profile of product and labour market regulations.
on employment across OECD countries. They construct regulation indicators, such as employment protection and barriers to trade and investment, for period 1982-1995. They find that countries with restrictive product market regulation and tight employment protection legislation tend to have lower employment rates. In particular, the stronger integration in the EU area does not seem to have been associated so far with convergence in a number of labour market institutional features, such as employment protection, collective bargaining, as well as the size and structure of social benefits. Haffner, Nickell, Nicoletti, Scarpetta and Zoega (2000) investigate whether European market integration, competition policies and the EMU provide sufficient incentives to countries for increasing competitive pressures needed to make labour markets more flexible. They use indicators, such as convergence of price structures, trends of profit margins, and degree of product and labour market regulations, over the past two decades. They find evidence that both product market competition and labour market flexibility have been fostered by integration. However, there is still considerable scope for increasing competitive pressures within the EU.

(To be completed)

5 CONCLUSIONS

(To be added)

REFERENCES

