Strategic Tariff Protection, Market Conduct, and Government Commitment Levels in Developing Economies

A Symmetric versus Asymmetric Information Analysis

Delia Ionaşcu
Copenhagen Business School
CERGE-EI, Prague

Krešimir Žigić
CERGE-EI, Prague

Abstract

We analyze a simple “tariffs cum foreign competition” policy that is targeted at enhancing the competitive position of a domestic, developing country firm that competes with its developed country counterpart on the domestic, imperfectly competitive market. The above policy set-up can appear in several variants due to reasons such as differing types of oligopoly conduct, the ability or inability of the domestic government to commit to its policy and information asymmetry. The benchmark policy option is free trade. We evaluate these policy options with respect to several criteria (i.e., social welfare, the information requirement, time consistency, possibility of the manipulative behavior by the firm) and reach the conclusion that the most robust policy setup is that in which the domestic government is unable to pre-commit to the level of its policy instrument. Finally, we examine this policy, allowing for asymmetric information, and show that, under certain conditions expected social welfare may be higher than under perfect information set-up.

JEL: F13

Keywords: optimal tariff protection, government non-commitment regime, R&D effort, symmetric versus asymmetric information

º This research was supported by a grant from the CERGE-EI Foundation under a program of the Global Development Network. Additional funds for grantees in the Balkan countries have been provided by the Austrian Government through WIIW, Vienna. All opinions expressed are those of the author and have not been endorsed by CERGE-EI, WIIW, or the GDN. We would like to thank to Pascalis Raimondos-Møller and Christian Schultz for their extremely helpful comments and suggestions on the first draft of the paper. Delia wishes to acknowledge the supportive working environment and excellent facilities at the Institute of Economics, University of Copenhagen where she was a Marie Curie fellow.

* Center for Economic Research and Graduate Education – Economics Institute, Prague
1. INTRODUCTION

The conventional wisdom originating from, for example, the Washington consensus, states that a prerequisite for a developing (or transition) country to achieve a stable growth path is to, among other things, liberalize its trade. However, recent study by Ramirez and Rodrik (2001) cast doubt on this previously unchallenged “truth”. The authors show that the countries that initially follow a trade protection policy and other import substitution policies, display respectable economic growth per capita for a substantial period of time. They also demonstrate that the subsequent economic crisis in some of these countries are not necessary due to the pursued trade polices, but rather are consequences of bad macro management and adverse external shocks. Rodrik (2001) concludes that trade liberalization is an outcome rather than a precondition for successful economic development.

The above considerations suggest that it might be desirable for a developing economy to protect some of its industries that are believed to have long-run perspective. Thus, delicate issues here are which industries should be protected and when and how the government may try to assist them. Without entering too much into details of this issue, it could be expected that the selected industry or firm should be the one that is capable of narrowing the technological gap vis-à-vis its counterparts in developed countries. This in turn would require investment in innovation by the developing country firm, or more likely, investment in imitation of the advanced technology. Moreover, the technological level of the developing country firm should not lag so far behind its developed country counterparts so that it is unable to directly compete with the developed country’s firm given an adequate protection policy.

A variety of policy instruments would protect the domestic market and enhance domestic innovation or imitation. However, as far as policy choice is concerned, our aim here is rather modest; the criterion for policy selection is not a first-best possible policy mix, but a simple and transparent policy that enhances social welfare.

The standard tools for import protection used in developing countries are tariffs. Tariffs are also known to enhance the innovative effort of the domestic firm1 (see, for instance, Reitzes, 1991, Žigić, 2000, Bouêt, 2001, and Qiu and Lai, 2001) and provide funds to the state treasury. The optimal tariffs are not likely to be prohibitive, since the presence of

1 The link between tariffs and the innovative (or imitative) activity of the domestic firm is often considered the core of the infant industry argument.
the foreign competitor on the market in the form of imports might also be beneficial both for consumer surplus and for the domestic firm’s incentive to innovate (or imitate)\(^2\). Since the presence of a foreign firm in the form of foreign direct investment would imply zero tariffs, our approach applies only when foreign firms opt not to enter the domestic, developing country market or when there is a ban on foreign direct investment. One reason for a ban on foreign direct investment, may, for instance, be that it leads to a crowding out of domestic entrepreneurship in a particular industry (see Das, 2002). Thus, another “policy tool” that complements tariffs is the competition of the foreign firm in terms of domestic import.

Although R&D subsidies are another standard policy tool that enhances the innovative or imitative effort of the domestic firm, the typical developing country usually does not have the financial resources to subsidize R&D investment, so we discount the possibility of subsidization\(^3\) in our analysis. Moreover, as Krugman (1989) noted, less developed countries are often unable to commit to future subsidies.

Our paper is motivated by the potential importance of this “tariffs cum foreign competition” policy which should enable developing economies to start the catch-up process for those of its industries that exhibit greatest comparative advantage. We analyze the plausible variants of the above policy set-up in terms of social welfare generated, and in terms of the informational requirements for their implementation. We also check whether these policies are prone to time consistency problems and the strategic behavior (manipulation) of the domestic firm. We then compare the polices with free trade and with another relevant benchmark polices, like the hypothetical case in which the domestic government can set the domestic firm’s innovative level in addition to setting the tariff.

The “plausible variants” of our trade policy arise due to several factors. The first and the most familiar of these is that the market under consideration is likely to be oligopolistic. In practice, it is often the case that there is only one or a few domestic firms in the industry to be protected by the domestic government and a few foreign competitors forming an oligopolistic market. As is well known, even in such a seemingly simple framework both policy implementation and policy conclusions might be rather sensitive to the factors like underlying oligopoly conduct (see Eaton and Grossman, 1986).

\(^2\) Žigić (2000) showed that the incentives to innovate in duopoly are higher than in monopoly in the absence of unilateral R&D spillovers from the innovative firm to the spillovers receiving firm.

\(^3\) Bhattacharjya (1995) demonstrated that implementing a subsidy might be troublesome for numerous reasons arising from the high information content required to implement the optimal subsidy to the distorting effects of taxes necessary to finance the subsidy.
The second source of possible variations in our policy set-up lies in the (in)ability of the domestic government to commit to its policy (see, for instance, Karp and Perloff 1995, Neary and Leahy, 2000, and Žigić, 2003). This idea can be traced to Carmichael's (1987) observation that governments often set the level of their policy instrument only after firms have already chosen the level of some strategic variable. In this context a domestic firm might influence (or manipulate) the government's policy response through the level of their variable. This strategic behavior of the domestic firm against the local government causes inefficiencies that may lead to lower social welfare compared to the corresponding social welfare under free trade.

The third and last factor we consider a potential cause of policy variation stems from asymmetric information between the firms and the government. As Qiu (1994) pointed out “...it is reasonable to expect that policymakers have less information than firms concerning production and markets.” Unlike the majority of existing literature on asymmetric information in strategic trade (see, for instance, Qui, 1994 and Maggi, 1998, Grossman and Maggi 1999, Bhattacharjea, 2001), which assumes cost or demand parameter uncertainty, we focus here on the particular information asymmetry that arises from the government’s uncertainty about the mode of competition (for related modeling of this kind of uncertainty see Ionașcu and Žigić, 2001 and Maggi, 1996).

In modeling the above set-up, we rely on a multistage game where we allow for strategic investment in technology catch-up by the domestic firms that may exhibit the features of industries in developing countries. This investment may take the form of technological upgrading or costly imitation undertaken by the domestic firms in order to acquire the developed country’s technology. We consider two polar types of market conduct (Cournot versus Bertrand), and two different timings of government intervention (before investment in technological upgrading occurs and after it). With this model, we test the robustness and the informational requirement across different competition types, as well as different government commitment levels. Moreover, since strategic policies are often criticized for their sensitivity to the type of market competition, we assess how the presence of information asymmetry and uncertainty may affect domestic social welfare. We consider a set-up with asymmetric information in which firms are fully informed about the type of market conduct, whereas the domestic government may only holds some rational beliefs about it.

It is important to stress at the outset that our approach is distinct from the “infant
industry protection” analysis. The latter is explicitly concerned with the economic consequences of trade liberalization, or the removal of the tariff barriers about to take place in specific time horizon (see infant industry papers like Wright, 1995, Leahy and Neary, 1999, Miravete, 2001). In our approach, the issue of removing tariff barriers is beyond the scope of the analysis. We assume that the protection lasts “for a substantial period of time”, as Rodrik (2001) has demonstrated, and that if trade liberalization is ever to happen, it would take place during an uncertain, very long period so that the protected firms do not take this into account in their economic calculations.

Furthermore, our analysis is linked to the work of Bhattacharjea (1995) who also analyses tariff policy on the domestic market in the context of the developing countries. He comes to the conclusion that tariffs are robust in different market conducts, and that the informational requirement necessary for identifying their optimal level is not too large compared with, say, investment or output subsidies. Also the agency problem does not arise in Bhattacharjea’s analysis. However, Bhattacharjea (1995) considers neither prior strategic R&D investment by firms nor the assumption of possible information asymmetries. Furthermore, he does not analyze the situation when the government can commit in advance to its policies.

Bhattacharjea’s (1995) result, in which tariffs are robust instruments with respect to the market competition type, carries over fully in our more complex set-up. In addition, we prove that these results hold for different government commitment levels. Regardless of the government's ability to commit to its policy, the foreign rent extraction effect, the reduction in domestic oligopoly distortion effect and beneficial effect on domestic innovative (imitation) activity are strong enough to justify a positive tariff, so that social welfare under protection is always higher than under free trade.

Regardless of market competition type and the timing of policy setting, tariff protection enhances the innovative effort of the domestic firm and consequently validates less developed countries calls for tariff protection to assist domestic firms in closing the gap between their technology levels and that of their developed country’s competitors. In this respect, a committed government performs better than a non-committed one, since the level of tariff can directly influence the domestic firm's R&D choice.

The presence of asymmetric information might have a beneficial effect on domestic social welfare in our set-up. In the first case, in which the government is assumed unable to update its prior beliefs about the type of market conduct, a non-committed domestic
government will in some cases choose tariff levels that are higher than the full information tariffs and thus generate higher social welfare than in the case of symmetric information. In the second case, where information is asymmetric, the government is allowed to update its beliefs after it observes the firm’s R&D effort. Since the firm with a Cournot conduct may have an incentive to signal its type and differentiate itself from the Bertrand firm, it would invest more in R&D, possibly generating higher social welfare as compared to the corresponding perfect information case.

With regard to the information requirements for the implementation of the optimal policy, we show that the information burden in the case of the government commitment regime is very high compared to the non-commitment case, and is, in addition, prone to the manipulative behavior of the domestic firm. The committed government sets the tariff level to enhance domestic innovation effort and needs to know the domestic technology and production parameters.

The rest of the paper is organized in eight sections. In the second section, we define the model that is followed by a description of the “first-best” optimal R&D and tariff protection choice. The sections four, five and six derive the equilibria in the government “non-commitment” regime, free trade and the government “commitment” regime, respectively. In section seven we evaluate the three policy regimes by several criteria, such as generated social welfare, the information required to implement the optimal policy, the issue of time consistency, etc. In chapter eight, we introduce asymmetric information concerning the competition type. The last section summarizes the main findings of the paper.

2. THE MODEL

We focus on the domestic country. We assume that in this country three different goods are consumed. Two of them are differentiated products produced in an oligopolistic sector while the third one, the *numeraire*, is produced domestically in a competitive sector. The first two varieties are supplied by a domestic and a foreign firm that compete either in prices or in quantities in the domestic country.4

Domestic consumers are of the same type and are continuously distributed. In addition, we assume that the representative consumer has a separable utility function, linear in the *numeraire* good. Thus, there is no income effect on the consumers' consumption of

4 We assume that there is no consumption of the differentiated variety in the foreign country. Alternatively, we can assume that the foreign and the domestic market are segmented.
differentiated goods. The representative consumer’s maximization problem can be written as

$$\max_{q^d, q^f} \left\{ U(q^d, q^f) - p^d q^d - p^f q^f \right\}$$

(q^d and q^f denote the consumption of differentiated goods produced by the domestic and the foreign firm, respectively, p^d and p^f are their respective prices, and $U(\cdot, \cdot)$ stands for the consumer’s subutility function of consuming the differentiated goods). Moreover,

$$CS(q^d, q^f, p^d, p^f) = U(q^d, q^f) - p^d q^d - p^f q^f$$

is an exact measure of consumers’ surplus. Like Singh and Vives (1984), we assume that $U(\cdot, \cdot)$ is a quadratic and strictly concave function given by

$$U(q^d, q^f) = \alpha_d q^d + \alpha_f q^f - \frac{1}{2} [\beta_d(q^d)^2 + 2\gamma q^d q^f + \beta_f(q^f)^2].$$

From the strict concavity assumption, it follows that $\alpha_i > 0$, $\beta_i > 0$, and $\beta_d \beta_f - \gamma^2 > 0$, for $i = d, f$. Also, to ensure the existence of direct demands we assume that $\alpha_i \beta_j - \alpha_j \gamma > 0$ for $i \neq j$, $i = d, f$. The parameter γ quantifies the type and the degree of differentiation between the two varieties. We assume that the two differentiated varieties are substitutes, so $\gamma \geq 0$.

Following the utility maximization problem the inverse demands are linear and are given by

$$p^d(q^d, q^f) = \alpha_d - \beta_d q^d - \gamma q^f$$

$$p^f(q^d, q^f) = \alpha_f - \beta_f q^f - \gamma q^d.$$ \hspace{1cm} (1)

$$p^d(q^d, q^f) = \alpha_d - \beta_d q^d - \gamma q^f$$

$$p^f(q^d, q^f) = \alpha_f - \beta_f q^f - \gamma q^d.$$ \hspace{1cm} (1')

The original technology of the domestic firm lags behind that of the foreign firm. It requires a pre-innovation unit cost of c, while the corresponding value for the foreign firm, c_f, is lower than c and, for simplicity, is set to zero. To catch up with its rival before facing its competitor in the market the domestic firm engages in process R&D activities. The decrease in marginal cost due to the innovative effort is denoted by x. To obtain an x ($\leq c$) decline in the unit production cost, the domestic firm has to incur $k \cdot i(x)$ costs, where $i(0) = 0$, $i'(x) > 0$, and $i''(x) \geq 0$, for any x on $[0, c]$. Any innovative effort aiming to decrease the marginal cost below 0 brings the R&D costs to infinity. The parameter k describes the expensiveness of the innovative process. We assume that the technology of the foreign firm is mature enough and does not require any R&D efforts.

The government in the domestic country considers raising the innovative activities of the local firm and social welfare by introducing a tariff. We assume a benevolent government
that cares about all the agents in the domestic economy (consumers, the local producer and its own revenue). In what follows, the variable \(t \) quantifies the specific tariff level \((t = 0 \text{ when there is no tariff protection}) \).

Depending on the government's ability to commit to its policy, we consider two related three-stage games. If the government can commit in advance, the actual level of tariff is set before the domestic firm sets its innovate efforts. Then, in the first stage of the game the domestic government announces the tariff protection level \((0 \text{ if there is no intervention}) \). In the second stage, the domestic firm invests in R&D. Finally, in the third stage, the two firms meet in the domestic market where they compete either in prices or in quantities. We refer to this game as the government "commitment" case. When the optimal tariff is chosen after the R&D is already in place but before competition takes place, the first and the second stages of the game are inverted. So, first the domestic firm chooses its level of innovation, then the domestic government sets the level of tariff protection. At the end, the competition in the market takes place. We call this game the government "non-commitment" case.

Using the above notations, we can write the firms' profits in the domestic market as

\[
\pi^d (s^d, s^f; x) = q^d [p^d - (c - x)] - ki(x)
\]

\[
\pi^f (s^d, s^f; t) = q^f [p^f - t],
\]

where \(s \) stands for \(q \) if the firms compete in quantities and for \(p \) when they compete in prices. However, running a separate analysis for the quantity competition and for price competition is arduous, cumbersome and messy. In order to avoid this, we put both the Bertrand and Cournot analysis under a common umbrella. Namely, we assume that each firm has an explicit conjecture about its competitor output choice (see e.g. Eaton and Grossman, 1986, Dixit 1988 or Martin, 1990). These conjectures are defined by parameters \(v_d, v_f \) and by means of them we can easily reproduce both the Cournot and Bertrand equilibria since \(v_d = v_f = 0 \) for Cournot competition and

\[
\frac{\partial p^d}{\partial q^d} \frac{\partial q^d}{\partial q^f} = -\frac{\gamma}{\beta}, \quad \frac{\partial p^f}{\partial q^f} \frac{\partial q^f}{\partial q^d} = -\frac{\gamma}{\beta}
\]

for Bertrand competition. We can regard now the last stage of the game as a quantity decision subgame, but depending on the choice of parameters \(v_d \) and \(v_f \), we actually get either the Cournot set-up or the Bertrand set-up.\(^5\) Another advantage of such unified treatment is that it allows us to distinguish between the perceived and true values of certain important parameters. This, in turn, proves helpful in

\(^5\) See Maggi (1996) for a different unified treatment of Bertrand and Cournot competition where choice variables are prices and where the capacity constraint determines the equilibrium outcome (Cournot or Bertrand). Apart from conjectures describing the Bertrand and Cournot equilibria, we do not use here a full-fledge conjectural variation model (see Dixit (1988) on the strengths and limits of this approach).
explaining the underlying economic intuition behind our results (see Helpman and Krugman, 1989 for such an approach). To simplify the notations and the formulas, we define $V_d = \beta_d + \gamma v_d$ and $V_f = \beta_f + \gamma v_f$ (an interpretation of V_d and V_f will be given later). It straightforward to verify that for both the Bertrand and Cournot conjectures the property $V_d\beta_f - V_f\beta_d = 0$ holds.

In what follows we assume that under tariff protection (with or without government commitment), the cost and demand parameters are such that the equilibria are characterized by interior solutions for the product competition stage and levels of innovation higher than zero. Using the above notations, these requirements impose the following constraints on parameters:

\begin{align*}
c < \alpha_d. \\
K(0) &< \frac{2V_d(V_f + \beta_f)^2}{(V_d + \beta_d)(V_f + \beta_f) - \gamma^2} \left[\frac{\alpha_d - c - \frac{\gamma}{2V_f + \beta_f}}{\alpha_f} \right]. \\
K(x) &> \frac{2V_d(V_f + \beta_f)^2}{(V_d + \beta_d)(V_f + \beta_f) - \gamma^2}, \quad \forall x \in (0, c).
\end{align*}

In addition, we assume the k is high enough that the domestic social welfare in the government commitment case is a strictly concave function of t. This last requirement will generally increase the lower bound limit on k defined by (A3).

The first constraint, (A1), requires the home firm to be a viable monopoly, even without innovating. The second condition, (A2), guaranties R&D levels bigger than zero in the case of tariff intervention (with or without government commitment). It ensures that the domestic firm has "significant" market size in order to benefit from its first unit of innovation. This requirement is more restrictive for high levels of k, since the first unit of investment becomes more expensive. The last assumption, (A3), ensures that the second order conditions for the profit maximization problems are satisfied.

When necessary, to distinguish both the firms and government's choices between the two different types of competition, we will use superscript C for variables in Cournot competition and superscript B to denote Bertrand values.

3. The "First–best" Equilibrium

We begin the social welfare analysis by deriving and discussing the hypothetical socially optimal equilibrium in which the government, besides the tariff, would be able to
choose directly the level of its firm’s innovative (or R&D) effort.6 We, for a convenience, label this equilibrium the “first-best” optimum7. In this case tariff and innovation levels are chosen at the same time.

The first order conditions associated with the profit maximization problems are

\begin{align}
 p^d - (c - x) - V_d q^d &= 0 \\
 p^f - t - V_f q^f &= 0
\end{align}

where V_d and V_f are now readily interpreted as the slopes of the perceived inverse demands for the home and foreign firm respectively (see Singh and Vives, 1984). The optimal quantities that solve the system of equations (3) and (3’) are given by

\begin{align}
 q^d(x,t) &= \frac{1}{(V_d + \beta_d)(V_f + \beta_f) - \gamma^2} \left[(V_f + \beta_f)(\alpha_d - c + x) - \gamma(\alpha_f - t) \right] \\
 q^f(x,t) &= \frac{1}{(V_d + \beta_d)(V_f + \beta_f) - \gamma^2} \left[(V_d + \beta_d)(\alpha_f - t) - \gamma(\alpha_d - c + x) \right].
\end{align}

Taking into account the first order condition (3), the domestic firm’s profit (2) can be rewritten as

\begin{equation}
 \pi^d(x,t) = V_d (q^d(x,t))^2 - ki(x)
\end{equation}

where $q^d(x,t)$ is given by (4).

We can now solve for the “first-best” values of R&D and tariff. Since we assumed that the domestic government cares about all the agents in the economy, its social welfare function is given by

\begin{equation}
 W = CS + \pi^d + t q^f = U(q^d, q^f) - [(c - x)q^d + ki(x)] - [p^f - t]q^f.
\end{equation}

It follows that an infinitesimal change in the subgame perfect equilibrium produces a social welfare effect

\begin{equation}
 dW = (p^d - c + x) dq^d - q^f d(p^f - t) + tdq^f + (q^d - ki(x)) dx,
\end{equation}

that is a combination of four different effects: a domestic oligopoly distortion effect (first term), a terms of trade effect (second term), a volume of trade effect (third term), and a cost reduction effect (fourth term). While the first three effects were present in Dixit (1988) and

6 Note that in terms of social welfare this is equivalent to assuming that the government can set an optimal R&D subsidy (tax).

7 However, the usage of the term “first-best” is not completely correct here, since the true “first-best” policy in our set up would also involve an output subsidy to correct for oligopoly distortion (see also footnote, 10). Nevertheless, we use the term “first–best” to distinguish from polices where only tariff is available.
Cheng (1988), the fourth effect is new and is specific to this set-up with R&D innovation. It captures the direct effect of an increase in R&D on the domestic firm's profit.

Using the foreign firm's first order condition (3') we can rewrite the total social welfare effect (7) as

\[dW = (p^d - c + x)dq^d - [V_f q^f - t]dq^f + (q^d - ki'(x))dx. \]

(8)

When we employ in (8) the home firm's first order condition (3) and the inverse demand (1) we get

\[dW = \left(V_d q^d + V_f \frac{V_d + \beta_d}{\gamma} q^f - \frac{V_d + \beta_d}{\gamma} t \right) dq^d + \left(q^d - ki'(x) - V_f \frac{1}{\gamma} q^f + \frac{1}{\gamma} t \right) dx. \]

(9)

From (4) and (4') we see that \(q^d \) can be expressed independently of \(x \) as a function of \(q^f, t \), and model's parameters. Thus \(q^d \) and \(x \) are not linearly dependent variables. In this situation, to have \(dW = 0 \) for arbitrary values of \(dq^d \) and \(dx \) (not both zero) as the policy optimization (social welfare maximization) problem requires, it is necessary and sufficient that the values of both parentheses in (9) equal zero. These values correspond to the first order conditions in the social welfare maximization problem.

When we equate the first parenthesis of formula (9) to zero, that is

\[V_d q^d + V_f \frac{V_d + \beta_d}{\gamma} q^f - \frac{V_d + \beta_d}{\gamma} t = 0, \]

(10)

we obtain the “first-best” value of tariff

\[t_{so} = V_f q^f + \gamma \frac{V_d}{V_d + \beta_d} q^d. \]

(11)

As Dixit (1988) showed in a similar set-up without innovation, this is the tariff that a government would impose if no output subsidy were considered. It serves to extract foreign duopoly rents and meanwhile to eliminate part of the domestic oligopoly distortion by enhancing the home firm's market share.\(^9\) When in place, the output subsidy has to account for this last effect, so \(t_{so} \) given by (11) is higher than the optimal tariff policy supported by such a subsidy.\(^{10}\)

\(^8\) Cheng (1988) called the third effect an "import consumption distortion effect". See a more detailed description of these first three effects in this paper.

\(^9\) When tariff and innovation levels are chosen simultaneously (as is the case in this section) a change in tariff has a direct impact on \(q^f, q^f \), and \(p' - t \) but not on \(x \), so only the first three effects from (7) are present.

\(^{10}\) Actually in this set-up which includes an R&D choice, a combination of three policies forms the first-best policy: a tariff, an output subsidy (tax for price competition), and an R&D subsidy. With or without an R&D
By replacing in the optimal tariff formula (11) the actual quantities \(q^d \) and \(q^f \) from formulas (4) and (4'), and by exploiting the fact that \(V_d \beta_f - V_f \beta_d = 0 \) for both Bertrand and Cournot conjectures, we get a simplified form of this tariff

\[
t_{so} = \frac{\alpha_f}{2 + \frac{\beta_f}{V_f}}.
\]

(12)

The level of this tariff depends only on the intercept of the foreign inverse demand function and on the ratio between the foreign firm's elasticity of inverse demand and its perceived elasticity. It does not depend on the innovation level \(x \). Consequently, social welfare (6) seen as a function of \(t \) and \(x \) is separable with respect to these two variables.

To find the “first-best” innovation level, we equate the second parenthesis of formula (9) with zero, and we get

\[
q^d - k t_{so}(x_{so}) - V_f \frac{1}{\gamma} q^f + \frac{1}{\gamma} t = 0,
\]

alternatively, in the case of corner solutions for the R&D level, \(dx = 0 \).

The government would use the innovation effort of its firm as an imperfect substitute for the output subsidy. That is, part of the domestic oligopoly distortion would be reduced through higher R&D investment, since a higher level of innovation would bring about a higher domestic production, thereby reducing the gap between the price and the marginal cost.\(^\text{12}\) The government then faces a trade-off between the social benefits from a reduced domestic oligopoly distortion and the associated costs (the costs of innovation and the negative impact on the volume of trade). Therefore, when we employ the "first-best" tariff (11) in (13) we get

\[
kt_{so}(x_{so}) = q^d(x_{so}, t_{so}) \frac{2V_d + \beta_d}{V_d + \beta_d}.
\]

(14)

subsidy, when there is an optimal output subsidy, the optimal tariff and output subsidy are given by \(t_{so} = V_f q^f \) and by \(s_{so} = q^d V_d \), respectively. This gives a \(p^f = 2t \), thus the domestic government gains control over half of the foreign firm's mark-up. When a fixed subsidy \(s \) is considered, the optimal tariff becomes \(t_{so} = V_f q^f + \gamma (q^d V_d - s)/(V_d + \beta_d) \). See Dixit (1988) for a full proof of this result.

\(^{11}\) Based on Dixit (1988), more parameters would be included in formula (12) (Dixit (1988) uses slightly different notations than ours). However, for all conjectures that verify \(V_d \beta_f - V_f \beta_d = 0 \), thus for all the conjectures for which there is the same ratio between the firms' elasticity of demand and their perceived elasticities, formula (12) holds. In the case of Cournot conjectures, this was previously noted by Bhattacharjea, (1995).

\(^{12}\) However an output subsidy would still enhance the domestic welfare, since it eliminates the domestic oligopoly distortion that persists even at lower marginal costs.

\(^{13}\) In the case of corner solutions for R&D investment \((x = c)\), this equality becomes inequality:
As we said, the discussion of the “first-best” social welfare and its accompanied optimal values (like unit cost reduction and tariffs), in the hypothetical case when the domestic government can directly and simultaneously determine both R&D effort of its firm and specific tariff, will serve as a benchmark for the comparison with the social welfare and the corresponding optimal values in “more realistic” equilibria. These more realistic equilibria are those in which the government is constrained only to the choice of tariffs or free trade. In the subsequent analysis we will continue to refer to t_{so} and x_{so} as “first-best” socially optimal values and compare them with the corresponding values of t and x in situations when the firm itself chooses unit cost reduction and the government only sets the tariff (either after or before the strategic choice of the domestic firm).

4. THE “NON-COMMITTED” DOMESTIC GOVERNMENT

We first analyze the situation where the domestic government cannot commit in advance to its policy. If a tariff is introduced, its level is chosen only after the local firm has already selected the level of its R&D effort.

4.1. Tariff policy

The level of the optimal tariff maximizes the social welfare function (6). As we noticed in the previous section, social welfare as a function of x and t is separable, so the optimal tariff will be equal to the "first-best” value described by (12), namely

$$t^* = t_{so}.$$

This is a quite remarkable and somewhat unexpected result. The optimal tariff in a simple set up where the domestic government is not able to commit in advance coincides with the “first-best” tariff. The reason for this is that the optimal tariff does not depend on the innovation effort, since R&D investment in our set-up affects only the domestic marginal cost, which has no effect on the optimal tariff level.\(^{14}\) However, the independence of the optimal tariff on domestic R&D ceases to hold in the case of subsidies. In a similar set-up but with output subsidies rather than tariffs, we proved that the government's policy depends on the level of R&D investment and therefore is subject to manipulative behavior from the domestic firm.

\(^{14}\) In fact, in contrast to the output subsidies, the optimal tariff depends only on the foreign firm's unit cost. If the foreign firm has a c_f marginal cost, then the level of the optimal tariff is $(\alpha_f - c_f)/(2 + \beta_f/V_f)$.
domestic firm (see Ionașcu and Žigić, 2001). Another situation where the innovation effort influences the level of the optimal tariff arises when there are spillovers from the innovating to the non-innovating firm (see Žigić, 2003). However, in our set-up R&D spillovers from domestic to the foreign firm are clearly not an issue at all.

One should note that, \(t^* \), is, in fact, a time-consistent tariff (see Goldberg, 1995). This is particularly important in the developing country context, since the governments of such countries often fail to ensure in advance the credibility of their policies (see also Bhattacharjea, 1995, on this issue).

When we replace the values of \(V_f \) corresponding to the two types of product competition, the optimal tariff in the Cournot competition case is given by

\[
t^*_C = \frac{\alpha_f}{3}
\]

and in the case of Bertrand competition by

\[
t^*_B = \frac{\alpha_f}{3 + \frac{\gamma^2}{\beta_d \beta_f - \gamma^2}}.
\]

In the case of Cournot competition the policymakers need to know only the market size of the foreign firm, while in the Bertrand case some extra information regarding the sensitivity of prices to demand and the degree of differentiation is required. Nevertheless, since in both cases no information on domestic costs and R&D investment is required, the agency problem is precluded.

Thus, tariffs as policy instruments prove to be robust and not too demanding in terms of informational requirements and seem to be a good alternative to the first-best policies so often criticized for their sensitivity to market conduct and extensive informational requirements. Nevertheless, there is a greater informational requirement in the Bertrand than in the Cournot type of market interaction. The optimal tariff in Cournot competition is also higher than that in Bertrand. The reason for these differences lies in the role that the domestic tariff performs. The tariff helps to extract rents from the foreign firm, to raise revenue for the domestic treasury and to reduce the oligopoly distortion of the domestic variety through enhanced domestic production and innovation. The extent to which these targets should be pursued is described by the ratio between the firms' elasticity of demand and their perceived
elasticity, which is in fact a measure of market competitiveness.15 When markets are less competitive (a low ratio), as is the case with the Cournot type of market competition, there are more foreign profits to be extracted and there is a higher domestic oligopoly distortion to correct for. Therefore, $t^*_{C} > t^*_{B}$. To compute the ratio between true and perceived elasticity, more information is needed in the case of price competition.

One should note that the tariffs' formula remains the same in the most general R&D investment cost function and the R&D effect on the marginal cost of the domestic firm.16

\textbf{4.2 Optimal R&D effort}

Anticipating that the domestic government will adopt the tariff t^*, the domestic firm chooses an R&D level that satisfies the first order condition associated with the maximization problem for the profit (5) evaluated in t^*, namely

$$k_i(t^*) = 2V_d q^d(x^*, t^*) \frac{\partial q^d}{\partial x}(x^*, t^*).$$ \hspace{1cm} (15)

When we replace the first derivative of the quantity q^d given by (4) with respect to x in (15) we get

$$k_i(t^*) = \frac{2V_d(V_f + \beta_f)}{(V_d + \beta_d)(V_f + \beta_f) - \gamma^2} q^d(x^*, t^*).$$ \hspace{1cm} (16)

From the “first best” point of view, this R&D investment level is too low. (As (A3) holds, the right hand sides of the equation (16) and the curve $k_i(t^*)$ have the single crossing property. In addition

$$t^* = t_{so} \text{ and } \frac{2V_d(V_f + \beta_f)}{(V_d + \beta_d)(V_f + \beta_f) - \gamma^2} < \frac{2V_d + \beta_d}{V_d + \beta_d} ,$$

so x^* is smaller than x_{so} (its implicit formula is given by 14)). Moreover, the Cournot competition yields higher R&D levels than its Bertrand counterpart does, thus $x^*_{B} < x^*_{C}$ (see Appendix 1 for a proof).

15 A firm producing in a less competitive market perceives its demand as being less elastic to changes in prices than a firm performing in a more competitive environment. Consequently, it produces less at higher prices and accrues higher profits.

16 The essential restrictions that support these results are the assumptions of only one firm investing in R&D and constant unit cost.
The important findings from this section are summarized in Proposition 1 below.

Proposition 1.

1. The generated social welfare is below the “first–best” level in both types of market conduct.

2. Both Cournot and Bertrand types of firm under-invest in R&D, x, from the social point of view.

3. The optimal R&D effort (or marginal cost reduction) in Cournot type of competition, x^*_C, always exceeds the optimal R&D effort in Bertrand type of competition, x^*_B, for any level of product differentiation, γ, that is, $x^*_C > x^*_B$.

4. The optimal tariff in Cournot competition is higher than its counterpart in Bertrand competition, that is, $t^*_C > t^*_B$.

Thus, regardless of the market conduct, the social welfare is below the “first-best level”. The same is true for R&D investment. Protected by a tariff policy, the domestic firm would find an innovative effort that results in a x_{so} decrease in marginal cost too expensive, since it ignores the fact that at the margin the gains in tariff revenue and possibly in consumer utility still offsets the losses in profits for x levels slightly above x^*. In addition, the possibility of socially wasteful over-investment in R&D is precluded by the fact that the optimal tariff in the non-commitment regime coincides with the optimal tariff in the “first-best” regime and so there is no potentially damaging manipulative behavior of the domestic firm.

The third part of proposition 1 is consistent with the Schumpeterian tradition that more monopolistic markets generate more innovation. The intuition behind these results is that in Cournot competition there are more profits to be gained, therefore, there are higher returns from a decrease in marginal cost. Technically, the impact of the market conduct on the level of R&D effort can be quantified by treating V_f as a continuous variable that measures the degree of market power. An increase in V_f implies a more monopolistic market and it is easy to show that $dx^*/dV_f > 0$ in our set-up (see Appendix 1). Alternatively, the expected ranking between x^*_C and x^*_B might be roughly predicated by referring to the famous Fudenberg-Tirole (1984) taxonomy of business strategies, where, in the Bertrand case, the firms competing in prices (being strategic complements) pursue a so called “puppy dog” strategy that asks for
“underinvestment” in the strategic variable, which is in our case unit cost reduction, \(x \). On the other hand, Cournot competition requires a so called “top dog” strategy that implies the “overinvestment” in the strategic variable (see Tirole, 1991).17

The presence of the optimal tariff proves to be crucial in determining the ranking of R&D investment in the respective market conduct. A higher anticipated tariff in Cournot competition provokes larger investment in R&D compared with Bertrand competition. As Bester and Petrakis (1993) have shown, in the absence of tariff protection, with high levels of \(\gamma \), the ranking is reversed so that \(x^*_{B} > x^*_{C} \).

Finally, the higher optimal tariff in the Cournot type of conduct is a consequence of the higher oligopoly distortion in a Cournot setting that requires larger correction.

5. FREE TRADE

Free trade equilibrium serves as an important general benchmark for comparison with other policy options. In our case, the comparison of free trade with the “non-commitment” policy regime is of special interest given the critique that the government’s inability to pre-commit to its policy may lead to a lower social welfare compared with free trade (see, for instance, Karp and Perloff, 1995, Neary and Leahy, 2000, Maggi and Grossman, 1998, Ionașcu and Žigić, 2001).

If the domestic government commits to free trade, the level of R&D investment maximizes the profits given by (5) for a zero tariff. Therefore, the optimal level of innovation is implicitly defined as

\[
ki^{*}(x_{f}) = 2V_{d}q^{d}(x_{f},0)\frac{\partial q^{d}}{\partial x}(x_{f},0),
\]

or after appropriate substitution

\[
ki^{*}(x_{f}) = \frac{2V_{d}(V_{f} + \beta_{f})}{(V_{d} + \beta_{d})(V_{f} + \beta_{f}) - \gamma^{2}} q^{d}(x_{f},0).
\]

Regardless of the type of competition in the market, the level of R&D induced by the anticipated tariff protection is always higher than the optimal level of innovation under free trade. To show this, we first recall from (4) that \(q^{d}(x, t) \) is increasing in \(t \). Then for \(x^{*} \),

17 However, the notion of “under”- and “over”- investment” in the Fudenberg-Tirole (1984) approach is defined with respect to the non-strategic firm’s behaviour and not relative to the “first-best” social optimum.
When we take the first derivative with respect to x of the function on the left hand side we get

$$k' i^*(x) - \frac{2V_d(V_f + \beta_f)}{(V_d + \beta_d)(V_f + \beta_f) - \gamma^2} q''(x^*, 0) > 0.$$

which is positive (due to the assumption A3). Therefore, x should decrease to reach equality again.

The optimal levels of R&D effort across the different regimes are displayed in Fig. 1 (RHS$_{so}$, RHS, RHS$_{ft}$ stand for the right hand side of the equations (14), (16), and (18) respectively. Note that as k decreases, innovation becomes cheaper, the optimal R&D levels increase and it is more likely to have corner solutions as shown by the dashed line in Fig. 1.

This result is consistent with the infant industry argument in favor of tariff policies. Indeed, the anticipation of tariff protection enhances the innovative efforts of the domestic firm and therefore positively impacts domestic the firm’s production costs.

Fig. 1 The innovation levels chosen under “first-best”, free trade and non-commitment regime

The above considerations suggest that the domestic firm’s profit and social welfare in non-commitment regime are larger than their counterparts in free trade. The comparison of the relevant equilibrium values in free trade and in the non-commitment regime is given in Proposition 2 below.
Proposition 2.

Regardless of type of the market conduct

1. Social welfare in the non-commitment regime is higher than in the free trade regime.

2. The optimal R&D effort (or unit cost reduction) in the non-commitment regime, \(x^* \), is always bigger than the optimal cost reduction under free trade, \(x_{ft} \).

3. The domestic firm earns a higher profit under such tariff protection

The proof: see the Appendix

The intuition for the above findings is straightforward; the anticipation of the optimal tariff motivates the domestic firm to enhance its R&D effort compared to free trade, since the tariff enables the domestic firm to capture higher market share and gain higher profit. Thus it has increased incentives to invest in marginal cost reduction. Finally, appearance of the tariff brings revenue to the domestic treasury and the joint impact of increased domestic firm profit and tariff revenue exceeds potential losses in consumer surplus, and thus leads to the increase in social welfare.

6. THE “COMMITED” DOMESTIC GOVERNMENT

When the domestic government is able to commit in advance to the precise value of its policy choice, it announces the level of the tariff protection before the domestic firm invests in R&D. The quantities that the domestic and the foreign firm will produce are given by (4) and (4') respectively. If a tariff was announced in stage one, the domestic firm chooses an innovation level that maximizes (5). Thus, the optimal R&D choice \(x(t) \) for a given \(t \), which we will denote as \(X \), satisfies

\[
kt'(X) = \frac{2V_d(V_f + \beta_f)}{(V_d + \beta_d)(V_f + \beta_f) - \gamma^2} q^d(X,t).
\] (19)

Regardless of the type of market conduct, the level of innovation increases when the tariff increases. To see this, we take the first derivative of the above equation (19) with respect to \(t \):

\[
\frac{dX}{dt} \left(kt''(X) - \frac{2V_d(V_f + \beta_f)^2}{[(V_d + \beta_d)(V_f + \beta_f) - \gamma^2]} \right) = \gamma \frac{2V_d(V_f + \beta_f)}{[(V_d + \beta_d)(V_f + \beta_f) - \gamma^2]^2}.
\] (20)
Since the term in brackets is positive due to assumption (A3), and since the sign of the right hand side is the same as the sign of \(\gamma \), the impact of an increase in tariff protection on the R&D level is positive. Therefore, for a given tariff, the R&D investment under tariff protection is higher than in the case of free trade.

When, for instance, the domestic government chooses \(t^* \), that is, the optimal tariff in the “non-commitment” regime, equation (19) gives a level of R&D \(X(t^*) \) equal to \(x^* \) (see also equation 16). Thus, in the commitment regime, from the domestic social welfare point of view, the government can do at least as well as without commitment (simply by choosing a tariff equal to \(t^* \)). Consequently, social welfare when the government can commit in advance to its policy is never lower than the optimal social welfare under a non-commitment situation.\(^{18}\)

The domestic government chooses a level of tariff protection \(T^* \) that maximizes (6). Since the first order condition (3') still holds, for an infinitesimal change in the Nash equilibrium in quantities, equation (9) is still valid. Plugging in it the domestic firm's first order condition with respect to innovation (19), we obtain

\[
dW = \left(q^d V_d + \frac{(V_d + \beta_d)(V_f q^f - T)}{\gamma} + \frac{2V_d (V_f + \beta_f) (\gamma q^d - \gamma \tilde{k}^*(X) - (V_f q^f - T))}{\gamma \tilde{r}^*(X)(V_d + \beta_d)(V_f + \beta_f) - \gamma^2} \right) dx.
\]

The government then chooses a level of tariff \(T^* \) such that the value of the square brackets is zero. So \(T^* \) is given by

\[
T^* = V_f q^f + \gamma \frac{V_d}{V_d + \beta_d} q^d +
\]

\[
+ \gamma \frac{2V_d (V_f + \beta_f) [q^d (2V_d + \beta_d) - \tilde{k}^*(X)(V_d + \beta_d)]}{(V_d + \beta_d)[\tilde{r}^*(X)(V_d + \beta_d)(V_f + \beta_f) - \gamma^2] - 2V_d (V_f + \beta_f)}.
\]

By using \(\tilde{k}^*(X) \) given by (19), the values for \(q^d \) and \(q^f \) given by (4) and (4'), and the fact that for Bertrand and Cournot conjectures \(V_d \beta_f - V_f \beta_d = 0 \) we obtain

\[
T^* = t^* + \gamma \frac{2 \beta_f^2 V_f [\beta_d (V_f + \beta_f)^2 - \gamma^2 (2V_f + \beta_f)] q^d}{(2V_f + \beta_f)[\beta_d (V_f + \beta_f)^2 - \gamma^2 \beta_f \beta_f] [\tilde{r}^*(X)(\beta_d (V_f + \beta_f)^2 - \gamma^2 \beta_f) - 2V_f \beta_f]}.
\]

As in the non-commitment case, besides extracting foreign rents, the optimal tariff should correct for domestic oligopoly distortion. Moreover, now that the tariff is chosen

\(^{18}\) As Žigić (2003) shows, this is generally not true when there are R&D spillovers from the innovating to the non-innovating firm. However, R&D spillovers are not a real possibility in our set-up.
before the home firm decides on its innovation level (and no R&D subsidy is considered), the
tariff has another role; it has to correct for the level of innovation that, as we saw in the non-
commitment case, tends to be sub-optimal. To enhance the innovation level, a higher tariff is
required\(^{19}\). Hence, the optimal tariff, \(T^*\), exceeds its corresponding counterpart, \(t^*\), without
government commitment. (It is straightforward to check that the second part in expression
(23) is positive.)

The optimal level of R&D effort, \(X^*\), calculated from (19) when the tariff, \(T^*\), given by
(23) is considered, is higher than the optimal level of innovation, \(x^*\), for a non-committed
government, but still below the “first-best” optimal level. These results are presented in the
following proposition (see the Appendix for a proof).

Proposition 3.

Regardless of the type of the market conduct:
1. The optimal tariff protection in the “commitment” regime is higher than the optimal tariff
 protection in its “non-commitment” counterpart, that is, \(T^* > t^*\).
2. Consequently, the domestic firm exhibits greater R&D effort in the “commitment” regime,
 that is, \(X^* > x^*\) and higher social welfare, that is, \(W^*\text{com} > W^*\text{ncom}\)
3. The R&D efforts in both the “commitment” and “non-commitment” regimes are below
 the “first-best” value, that is, \(x^* < X^* < x_{so}\).\(^{20}\)

\(^{19}\) To underline this new role of tariff as a direct instrument for enhancing the innovation level, we look at what
happens when the domestic government uses R&D subsidies to correct for sub-optimal levels of innovation.
When the government chooses an R&D subsidy, \(r\), together with the level of tariff protection, the welfare
becomes

\[
W = CS + \pi^d + t q^f - r k i(x) = U(q^d, q^f) - [(c - x)q^d + k i(x)] - [p^f - t]q^f.
\]

Since there is no change in the home and the foreign firm’s first order conditions (3) and (3’), the equations (7),
(8) and (9) still hold. With an R&D subsidy in place, \(q^d\) and \(x\) become again independent variables, so once more
we get the first order conditions of the welfare maximization problem (commitment case) by setting the values in
the parentheses to zero. The first parenthesis equals to zero gives us again formula (10), and consequently
formula (12) for the tariff level. The second parenthesis of (9) equals to zero gives (13). When we replace in (13)
the formula (12) for the tariff level, and domestic firm’s first order condition with respect to R&D,

\[
k_i'(x) = 2V_d q^d (V_f + \beta_f)/\left[(1 - r)(V_f + \beta_f)(V_f + \beta_f) - \gamma^2\right],
\]

we find that the optimal subsidy is

\[
r = k \left[\beta_d - 2V_d \gamma^2 /\left((2V_d + \beta_d)(V_f + \beta_f) - \gamma^2\right)\right] > 0
\]

for both Bertrand and Cournot conjectures.

\(^{20}\) Although it is not primary goal of our analysis, comparing the corresponding Cournot and Bertrand equilibria,
as we did in a previous section, would be of some interest. However, the expressions are prohibitively complex
so that the comparison for the general case is not possible. Therefore, we exploit a specific functional form for
the R&D effort function that now writes as, \(f(x) = x^2 /2\). As expected, we obtain that \(T^*\text{C} > T^*\text{B}\) and,
consequently, \(X^*\text{C} > X^*\text{B}\) (see Appendix).
7. ASSESSMENT OF THE CONSIDERED POLICIES

Before moving to the policy analysis under asymmetric information, we first briefly discuss the pros and cons of the three policies with respect to four criteria:

a) the social welfare that they generate
b) the information requirement for their implementation
c) the time consistency issue, and
d) the manipulation incentive by the domestic firm

The policies in question are government commitment regime (GCR), government non-commitment regime (GNCR) and free trade (FT). The ranking and the characteristics of the policies are given in Table 1.

Table 1.

<table>
<thead>
<tr>
<th>Policy\criterion</th>
<th>social welfare</th>
<th>inform. requirement</th>
<th>time consistency</th>
<th>manipulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCR</td>
<td>1 (largest)</td>
<td>3 (high)</td>
<td>3 (cred.problem)</td>
<td>3 (prone to man.)</td>
</tr>
<tr>
<td>GNCR</td>
<td>2 (second -largest)</td>
<td>2 (low)</td>
<td>1 (time consist.)</td>
<td>1 (no manip.)</td>
</tr>
<tr>
<td>FT</td>
<td>3 (lowest)</td>
<td>1 (zero)</td>
<td>3(cred.problem)</td>
<td>1 (no manip.)</td>
</tr>
</tbody>
</table>

Table 1 shows that the only strength of the government commitment regime is that it yields the highest social welfare. The information requirement for its implementation is likely to be prohibitively high and such a policy is susceptible to the manipulative behavior of the domestic firm. In addition, the capability of the developing country government to pre-commit to a given level of tariff is questionable at best, so the time consistency issue may arise.

The government non-commitment regime on the other hand has a rather low information requirement, and is not prone to the manipulative behavior of the domestic firm. Moreover, the optimal tariff in this regime is time consistent. The social welfare that it generates is lower than in the commitment regime but higher than in free trade.

Finally, free trade is the most convenient policy as far as the information constraint is concerned, but the worst one from the social welfare point of view. The free trade regime is also not void of time consistency problems. The government’s announcement of free trade may not be credible, since it would be optimal to intervene via tariff ex post.

So the above short discussion suggests that a „middle-of-the-road“ policy - government non-commitment regime – fairs best in the above qualitative assessments, with two second
ranks (social welfare, information requirement) and two first ranks (time consistency, no manipulation). However, these rankings are probably not enough to proclaim the government non-commitment regime as the champion. If the social welfare that government non-commitment regime generates is only slightly above that of free trade, then it may be better to stick to free trade due to its zero information content requirement if the government can somehow commit to it. On the other hand, if the difference in generated social welfare between the government commitment regime and the government non-commitment regime is “very large”, then it might be worth investigating how to overcome the problems associated with the former policy regime. Thus, in addition to a comparative qualitative assessment, we also need a comparative quantitative assessment of the social welfare that the three policies generate. As we will soon see, this analysis only reinforces the virtues of the government non-commitment regime.

For the purpose of the explicit quantitative analysis, we stick to the specific functional form of the investment function that is assumed quadratic and is given by \(i(x) = \frac{1}{2} k x^2 \). To simplify the calculation, we set \(\alpha_d = \alpha_f = \beta_d = \beta_f = 1 \), and \(k = 2 \). In order to avoid underestimating the overall gains from introducing a tariff, we rule out the possibility of having corner solutions for the innovation levels. Therefore, apart from satisfying the (A1) – (A3) assumptions, parameters \(c \) and \(\gamma \) should also be such that the reduction in marginal costs, \(x \), are smaller than \(c \).

7.1. Free Trade versus the Non-Commitment Policy Regime

The optimal levels of increase in efficiency under a non-committed government, \(x^{*B} \) and \(x^{*C} \), are implicitly given by formula (16). Having a quadratic investment function, we can explicitly solve equation (16). When we substitute the corresponding levels of \(V_d \) and \(V_f \) in this equation and solve for \(x \) we find that the level of increase in efficiency in the case of Bertrand competition \((V_d = V_f = 1 - \gamma^2) \), \(x^{*B} \), equals

\[
x^{*B} = \frac{2(2 - \gamma^2)^2[(1-c)((3 - 2\gamma^2) - 2\gamma^2)]}{(3 - 2\gamma^2)(k(1 - \gamma^2)(4 - \gamma^2)^2 - 2(2 - \gamma^2)^2)}
\]

while the level of increase in efficiency for Cournot competition \((V_d = V_f = 1) \), \(x^{*C} \), is given by

\[
x^{*C} = \frac{8[3(1-c) - \gamma]}{3k(4 - \gamma^2)^2 - 24}.
\]
The fact that these levels of x should be smaller than c adds to the (A1) – (A3) assumptions lower bound restrictions on c. In Bertrand competition, the marginal cost, c, should be at least as high as

$$c > \frac{(3 + 2\gamma)(2 - \gamma^2)^2}{(1 + \gamma)(3 - 2\gamma^2)(4 - \gamma^2)^2}$$

(A4)

while in Cournot competition it should be no lower than

$$c > \frac{4(3 - \gamma)}{3(4 - \gamma^2)^2}$$

(A5)

in order to have interior solutions for R&D investment.

The percentage gains in social welfare from having an optimal tariff protection set by a non-committed government with respect to the free trade outcome is given in Table 2 and Table 3. In Table 2 we consider the case when firms choose prices and we assume that (A1) – (A4) hold. To generate Table 3, we assume that firms set quantities and conditions (A1) – (A3), (A5) hold.

Table 2. Percentage differences between domestic social welfare under free trade and non-commitment when firms compete in prices*

<table>
<thead>
<tr>
<th>γ / c</th>
<th>0.25</th>
<th>0.3</th>
<th>0.35</th>
<th>0.4</th>
<th>0.45</th>
<th>0.5</th>
<th>0.55</th>
<th>0.6</th>
<th>0.65</th>
<th>0.7</th>
<th>0.75</th>
<th>0.8</th>
<th>0.85</th>
<th>0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>9.99</td>
<td>11.00</td>
<td>12.14</td>
<td>13.43</td>
<td>14.89</td>
<td>16.52</td>
<td>18.34</td>
<td>20.33</td>
<td>22.47</td>
<td>24.71</td>
<td>26.96</td>
<td>29.09</td>
<td>30.94</td>
<td>32.34</td>
</tr>
<tr>
<td>0.25</td>
<td>11.63</td>
<td>12.79</td>
<td>14.09</td>
<td>15.56</td>
<td>17.18</td>
<td>18.97</td>
<td>20.89</td>
<td>22.93</td>
<td>25.00</td>
<td>27.01</td>
<td>28.81</td>
<td>30.24</td>
<td>31.15</td>
<td></td>
</tr>
<tr>
<td>0.35</td>
<td>12.34</td>
<td>13.56</td>
<td>14.92</td>
<td>16.42</td>
<td>18.08</td>
<td>19.86</td>
<td>21.74</td>
<td>23.66</td>
<td>25.51</td>
<td>27.18</td>
<td>28.51</td>
<td>29.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.45</td>
<td>13.02</td>
<td>14.27</td>
<td>15.65</td>
<td>17.16</td>
<td>18.78</td>
<td>20.48</td>
<td>22.20</td>
<td>23.84</td>
<td>25.30</td>
<td>26.43</td>
<td>27.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.55</td>
<td>13.70</td>
<td>14.96</td>
<td>16.31</td>
<td>17.75</td>
<td>19.23</td>
<td>20.70</td>
<td>22.06</td>
<td>23.21</td>
<td>24.01</td>
<td>24.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td>15.70</td>
<td>16.63</td>
<td>17.43</td>
<td>17.99</td>
<td>18.18</td>
<td>17.91</td>
<td>17.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.85</td>
<td>19.22</td>
<td>18.50</td>
<td>16.79</td>
<td>14.08</td>
<td></td>
</tr>
</tbody>
</table>

(100 \frac{W_{nc} - W_{nc}^}{W_{nc}^*})
Table 3. Percentage differences between domestic social welfare under free trade and non-commitment when firms compete in quantities

<table>
<thead>
<tr>
<th>γ / c</th>
<th>0.25</th>
<th>0.3</th>
<th>0.35</th>
<th>0.4</th>
<th>0.45</th>
<th>0.5</th>
<th>0.55</th>
<th>0.6</th>
<th>0.65</th>
<th>0.7</th>
<th>0.75</th>
<th>0.8</th>
<th>0.85</th>
<th>0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>10.01</td>
<td>11.02</td>
<td>12.17</td>
<td>13.47</td>
<td>14.93</td>
<td>16.56</td>
<td>18.38</td>
<td>20.38</td>
<td>22.53</td>
<td>24.78</td>
<td>27.04</td>
<td>29.18</td>
<td>31.04</td>
<td>32.45</td>
</tr>
<tr>
<td>0.15</td>
<td>11.04</td>
<td>12.16</td>
<td>13.43</td>
<td>14.85</td>
<td>16.45</td>
<td>18.23</td>
<td>20.19</td>
<td>22.31</td>
<td>24.54</td>
<td>26.81</td>
<td>29.00</td>
<td>30.94</td>
<td>32.47</td>
<td>33.41</td>
</tr>
<tr>
<td>0.25</td>
<td>12.18</td>
<td>13.42</td>
<td>14.82</td>
<td>16.39</td>
<td>18.15</td>
<td>20.09</td>
<td>22.20</td>
<td>24.44</td>
<td>26.75</td>
<td>29.00</td>
<td>31.06</td>
<td>32.73</td>
<td>33.84</td>
<td></td>
</tr>
<tr>
<td>0.35</td>
<td>13.45</td>
<td>14.83</td>
<td>16.39</td>
<td>18.13</td>
<td>20.07</td>
<td>22.19</td>
<td>24.47</td>
<td>26.84</td>
<td>29.19</td>
<td>31.39</td>
<td>33.24</td>
<td>34.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.45</td>
<td>14.89</td>
<td>16.44</td>
<td>18.19</td>
<td>20.14</td>
<td>22.29</td>
<td>24.62</td>
<td>27.08</td>
<td>29.58</td>
<td>31.96</td>
<td>34.03</td>
<td>35.57</td>
<td>36.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.55</td>
<td>16.54</td>
<td>18.30</td>
<td>20.28</td>
<td>22.49</td>
<td>24.90</td>
<td>27.49</td>
<td>30.16</td>
<td>32.78</td>
<td>35.13</td>
<td>36.98</td>
<td>38.07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.65</td>
<td>18.47</td>
<td>20.50</td>
<td>22.78</td>
<td>25.31</td>
<td>28.07</td>
<td>30.97</td>
<td>33.89</td>
<td>36.62</td>
<td>38.87</td>
<td>40.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td>23.14</td>
<td>25.83</td>
<td>28.80</td>
<td>32.02</td>
<td>35.34</td>
<td>38.57</td>
<td>41.39</td>
<td>43.42</td>
<td>44.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.85</td>
<td>26.41</td>
<td>29.68</td>
<td>33.30</td>
<td>37.18</td>
<td>41.11</td>
<td>44.76</td>
<td>47.65</td>
<td>49.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.95</td>
<td>30.57</td>
<td>34.74</td>
<td>39.40</td>
<td>44.39</td>
<td>49.35</td>
<td>53.70</td>
<td>56.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*(100 \(\frac{W^c_{ft} - W^c_{nc}}{W^c_{nc}} \))

From the above tables we can infer several interesting properties. First of all, the gains from tariff protection are roughly between 10 and 32 percent in Bertrand competition and between 10 and 57 percent in Cournot competition. Thus, the introduction of a tariff has a significant, positive impact on the domestic country’s social welfare.

Second, in the case of Cournot competition, the performance of a tariff protection regime with respect to free trade increases with an increase in the initial domestic firm’s marginal cost level, \(c \), and with a decrease in the level of product differentiation. Similar relations hold in the case of Bertrand competition when products are not very similar (\(\gamma \leq 0.65 \)).

Third, at least for medium and low levels of \(\gamma (\gamma \leq 0.65) \), and values of \(c \) that satisfy both (A4) and (A5) restrictions, we can see that the percentage gains from tariff protection relative to free trade are quite similar in both types of market conduct.

7.2. Non-Commitment versus Commitment Regime

As in the above section, we take into consideration only interior solutions for the innovation levels. Thus, as before, besides satisfying the (A1) – (A3) assumptions, parameters \(c \) and \(\gamma \) should be such that \(X^{cB} \) and \(X^{cC} \) are smaller than \(c \).
To compute the optimal levels of increase in efficiency, we first replace in (19) the quadratic form of the investment function and the formula (4) for $q^d(X, t)$. We find that, given the level of tariff t, in the second stage the domestic firm chooses a level of R&D of

$$X(t) = \frac{V_d(V_f + 1)}{[(V_d + 1)(V_f + 1) - \gamma^2]^2 - V_d(V_f + 1)^2} - \frac{1}{2} \left[(V_f + 1)(1 - c) - \gamma(1 - t) \right].$$

Next, we derive the optimal tariff levels by replacing the above formula in (23) together with the formulas for Cournot and Bertrand conjectures. The optimal tariff protection for quantity competition is

$$T^c = \frac{1}{3} + \gamma \frac{4k(4 - 3\gamma^2)[3(1 - c) - \gamma]}{3k^2(4 - \gamma^2)^3 - 64k(3 - \gamma^2) + 48}$$

and for price competition

$$T^p = \frac{1 - \gamma^2}{3 - 2\gamma^2} + \gamma \frac{2k(4 - 3\gamma^2)(2 - \gamma^2)[(2 - \gamma^2)(1 - c) - \gamma]}{(3 - 2\gamma^2)D_B}$$

where

$$D_B = k^2(4 - \gamma^2)^3(3 - 2\gamma^2)(1 - \gamma^2) - 8k(2 - \gamma^2)^2(6 - 6\gamma^2 + \gamma^4) + 4(2 - \gamma^2)^2(3 - 2\gamma^2)$$

Finally, we obtain the optimal levels of increase in efficiency, X^p and X^c, by replacing in the formula for $X(t)$ the corresponding levels of V_d and V_f and of tariff protection. The level of X^p is given by

$$X^p = \frac{2(2 - \gamma^2)^3[k(4 - \gamma^2) - 2][(1 - c)((3 - 2\gamma^2) - 2\gamma^2)]}{k^2(4 - \gamma^2)^3(3 - 2\gamma^2)(1 - \gamma^2) - 8k(2 - \gamma^2)^2(6 - 6\gamma^2 + \gamma^4) + 4(2 - \gamma^2)^2(3 - 2\gamma^2)}$$

and the level of X^c is given by

$$X^c = \frac{8[k(4 - \gamma^2) - 2][3(1 - c) - \gamma]}{3k^2(4 - \gamma^2)^3 - 64k(3 - \gamma^2) + 48}.$$

These levels of increase in efficiency are below c if

$$c > \frac{(3 - \gamma - 2\gamma^2)(3 - \gamma^2)(2 - \gamma^2)^2}{144 - 364\gamma^2 + 332\gamma^4 - 138\gamma^6 + 27\gamma^8 - 2\gamma^{10}} \quad (A6)$$

in Bertrand competition, and if

$$c > \frac{4(3 - \gamma)(3 - \gamma^2)}{144 - 124\gamma^2 + 36\gamma^4 - 3\gamma^6} \quad (A7)$$

in Cournot competition.

The percentage gains in social welfare from having the optimal tariff protection set by a committed government rather than a non-committed one are given in Table 4 for price competition, and in Table 5 for quantity competition. In the first case we assume that (A1) –
(A3) and (A6) hold while in the latter case we assume that conditions (A1) – (A3), and (A7) are satisfied.

Table 4. Percentage differences between domestic social welfare under non-commitment and commitment when firms compete in prices*

<table>
<thead>
<tr>
<th>(\gamma / c)</th>
<th>0.25</th>
<th>0.3</th>
<th>0.35</th>
<th>0.4</th>
<th>0.45</th>
<th>0.5</th>
<th>0.55</th>
<th>0.6</th>
<th>0.65</th>
<th>0.7</th>
<th>0.75</th>
<th>0.8</th>
<th>0.85</th>
<th>0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.00060 0.00057</td>
<td>0.00053</td>
<td>0.00050</td>
<td>0.00045</td>
<td>0.00041</td>
<td>0.00036</td>
<td>0.00031</td>
<td>0.00025</td>
<td>0.00020</td>
<td>0.00014</td>
<td>0.00009</td>
<td>0.00005</td>
<td>0.00002</td>
<td></td>
</tr>
<tr>
<td>0.15</td>
<td>0.00550 0.00519</td>
<td>0.00484</td>
<td>0.00445</td>
<td>0.00403</td>
<td>0.00357</td>
<td>0.00308</td>
<td>0.00257</td>
<td>0.00204</td>
<td>0.00153</td>
<td>0.00104</td>
<td>0.00061</td>
<td>0.00028</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>0.01645 0.01540</td>
<td>0.01423</td>
<td>0.01295</td>
<td>0.01156</td>
<td>0.01066</td>
<td>0.00848</td>
<td>0.00684</td>
<td>0.00521</td>
<td>0.00366</td>
<td>0.00227</td>
<td>0.00114</td>
<td>0.00036</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.35</td>
<td>0.03674 0.03408</td>
<td>0.03114</td>
<td>0.02793</td>
<td>0.02446</td>
<td>0.02077</td>
<td>0.01694</td>
<td>0.01308</td>
<td>0.00936</td>
<td>0.00598</td>
<td>0.00317</td>
<td>0.00115</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.45</td>
<td>0.07389 0.06767</td>
<td>0.06086</td>
<td>0.05347</td>
<td>0.04559</td>
<td>0.03737</td>
<td>0.02904</td>
<td>0.02095</td>
<td>0.01353</td>
<td>0.00730</td>
<td>0.00277</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.55</td>
<td>0.14562 0.13092</td>
<td>0.11493</td>
<td>0.09782</td>
<td>0.07993</td>
<td>0.06179</td>
<td>0.04419</td>
<td>0.02812</td>
<td>0.01475</td>
<td>0.00521</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.65</td>
<td>0.30081 0.26206</td>
<td>0.22055</td>
<td>0.17721</td>
<td>0.13356</td>
<td>0.09178</td>
<td>0.05461</td>
<td>0.02515</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td>0.58953 0.45113</td>
<td>0.31499</td>
<td>0.19068</td>
<td>0.08962</td>
<td>0.02321</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.85</td>
<td>1.92371 0.96067</td>
<td>0.27264</td>
<td></td>
</tr>
</tbody>
</table>

\[*(100 \frac{W^c - W^{nc}}{W^{nc}})*\]

Table 5. Percentage differences between domestic social welfare under non-commitment and commitment when firms compete in quantities*

<table>
<thead>
<tr>
<th>(\gamma / c)</th>
<th>0.25</th>
<th>0.3</th>
<th>0.35</th>
<th>0.4</th>
<th>0.45</th>
<th>0.5</th>
<th>0.55</th>
<th>0.6</th>
<th>0.65</th>
<th>0.7</th>
<th>0.75</th>
<th>0.8</th>
<th>0.85</th>
<th>0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.00060 0.00056</td>
<td>0.00053</td>
<td>0.00049</td>
<td>0.00045</td>
<td>0.00041</td>
<td>0.00036</td>
<td>0.00030</td>
<td>0.00025</td>
<td>0.00020</td>
<td>0.00014</td>
<td>0.00009</td>
<td>0.00005</td>
<td>0.00002</td>
<td></td>
</tr>
<tr>
<td>0.15</td>
<td>0.00554 0.00494</td>
<td>0.00461</td>
<td>0.00425</td>
<td>0.00385</td>
<td>0.00341</td>
<td>0.00295</td>
<td>0.00246</td>
<td>0.00196</td>
<td>0.00146</td>
<td>0.00100</td>
<td>0.00059</td>
<td>0.00027</td>
<td>0.00007</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>0.01435 0.01345</td>
<td>0.01245</td>
<td>0.01136</td>
<td>0.01016</td>
<td>0.00887</td>
<td>0.00750</td>
<td>0.00608</td>
<td>0.00466</td>
<td>0.00329</td>
<td>0.00207</td>
<td>0.00106</td>
<td>0.00036</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.35</td>
<td>0.02794 0.02601</td>
<td>0.02388</td>
<td>0.02154</td>
<td>0.01899</td>
<td>0.01627</td>
<td>0.01342</td>
<td>0.01051</td>
<td>0.00768</td>
<td>0.00505</td>
<td>0.00281</td>
<td>0.00114</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.45</td>
<td>0.04614 0.04264</td>
<td>0.03877</td>
<td>0.03454</td>
<td>0.02997</td>
<td>0.02511</td>
<td>0.02010</td>
<td>0.01510</td>
<td>0.01036</td>
<td>0.00617</td>
<td>0.00286</td>
<td>0.00074</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.55</td>
<td>0.06904 0.06329</td>
<td>0.05694</td>
<td>0.05001</td>
<td>0.04256</td>
<td>0.03475</td>
<td>0.02681</td>
<td>0.01909</td>
<td>0.01205</td>
<td>0.00621</td>
<td>0.00210</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.65</td>
<td>0.09622 0.08742</td>
<td>0.07771</td>
<td>0.06715</td>
<td>0.05589</td>
<td>0.04421</td>
<td>0.03257</td>
<td>0.02161</td>
<td>0.01212</td>
<td>0.00494</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td>0.11312 0.09920</td>
<td>0.08411</td>
<td>0.06814</td>
<td>0.05182</td>
<td>0.03596</td>
<td>0.02165</td>
<td>0.01013</td>
<td>0.00262</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.85</td>
<td>0.13482 0.11642</td>
<td>0.09653</td>
<td>0.07566</td>
<td>0.05472</td>
<td>0.03504</td>
<td>0.01828</td>
<td>0.00623</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.95</td>
<td>0.13825 0.11730</td>
<td>0.09469</td>
<td>0.07122</td>
<td>0.04821</td>
<td>0.02751</td>
<td>0.01136</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[*(100 \frac{W^c - W^{nc}}{W^{nc}})*\]

From these tables we can see that, regardless of the type of market competition, the percentage loss in social welfare when the government cannot commit in advance to its policy is negligible. The loss ranges between a meager 0.00002% and an upper rough limit of 1.92%
for Bertrand competition and of 0.14% for Cournot competition. Our result does not change significantly when we vary parameter k.

To conclude, the government non-commitment regime now appears decidedly superior to the other policy options (at least within the assumed specific functional forms). What is even more interesting is that this policy set-up is the prevailing one in the developing world and so the often-expressed worries that the developing country governments are unable to pre-commit to a policy choice do not seem to be well founded, at least where simple tariff policy is concerned.

8. Market Equilibrium with Asymmetric Information

There are many ways in which information asymmetry may appear in the context under considerations. However, much of the critique of strategic trade policy focuses on the government’s inability to gather and process all the information necessary for beneficial intervention. Thus, we assume that the player in our setup who lacks relevant information is the domestic government. More specifically, we assume that the government does not know the type of market competition between the domestic and foreign firm. The relevance of such uncertainty is amply described in the Eaton - Grossman (1986) assessment, although Maggi and Grossman (1998) were first to call for an explicit analysis of this issue in the framework of asymmetric information more than a decade later.

Since the government non-commitment regime was the clear champion in the symmetric information setup, we focus on it in this chapter as well. When relevant, we discuss how results change for the government commitment regime.

Even in such a narrowly specified framework, the government’s (in)ability to cope with the information asymmetry can vary. In the first and standard situation, the government does not know a priori the type of market conduct, but, by observing the unit cost reduction of the domestics firm, it may infer the true type of competition. More consequential uncertainty occurs if for some reason the government is unable to learn the type of competition even after the R&D investment is in place. In what follows, we first analyze the latter type of uncertainty and then we discuss how results change when the government can infer the true type of competition.
7.1. Case 1: No updating of government’s prior beliefs

Let us assume that nature chooses the type of market interaction before any firm or government decision takes place. With probability η it chooses price competition and with $1-\eta$ it chooses quantity competition. η is common knowledge. After that firms learn the type of competition while the domestic government obtains no extra information. In what follows, we assess the impact of the lack of information on the level of tariff policy and domestic social welfare.

In terms of the timing of the game, we add an additional stage to the game; nature now moves first by choosing the type of market competition. Then, as before, the domestic firm selects its R&D effort, and thereafter the government sets the level of tariff protection knowing only the probability distribution of the true conduct parameter V_d: $\Pr(V_d^B) = \eta$ and $\Pr(V_d^C) = 1-\eta$ where V_d^B stands for Bertrand and V_d^C for Cournot conduct parameter. At the end, the two firms compete in the market.

As was made clear in Proposition 1, the levels of marginal cost reduction might convey information regarding the market type. However, we assume that after the innovation takes place the government does not update its beliefs regarding the type of market conduct. This may be the case when policymakers have bounded rationality, or, alternatively, when it may be too costly for the government to accurately assess the actual levels of R&D investment.

The domestic government now maximizes

$$EW = \eta W^B + (1-\eta) W^C$$

where W^B and W^C can be computed from (6) by plugging in it the expressions for the optimal domestic firm's output (4), the first order condition (3) and then the corresponding conjectures. By solving the social welfare maximization problem for a given level of x, we find that the optimal tariff level is given by

$$t^u = \frac{\alpha_f}{3 + \eta - \frac{\gamma^2}{\beta_i \beta_j - \gamma}}. \quad (25)$$

It is easy to verify that as η decreases from 1 to 0, t^u increases from t^uB to t^uC.

Proposition 4.

1. If Cournot conduct is the true type of competition, the intervention through an optimal
2. If Bertrand conduct is the true type of competition, for a “high enough” probability \(\eta \), intervention through an optimal tariff under uncertainty, \(t^u \), raises the social welfare level above that of its full information counterpart.

The complete proof appears in the Appendix.

When Cournot is true market competition, the level of tariff protection, \(t^u \), is always lower than the optimal tariff with full information (\(T^C > t^u \)) and therefore social welfare under full information is always higher than the social welfare under incomplete information. However, since social welfare is increasing in tariff in the interval \([0, T^C]\), the optimal protection, \(t^u \), still generates higher social welfare than free trade.

In the case of Bertrand competition the presence of uncertainty induces the domestic firm to anticipate levels of tariff protection higher than \(t^B \) but lower than \(T^C \). Since, as we saw in Section 6, any increase in the tariff protection level towards \(T^B \) enhances the social welfare for high enough levels of \(\eta \), the expected level of tariff protection will drive innovation and domestic social welfare upward to levels that are higher than the full information social welfare with intervention (see Appendix). However, as products become more homogenous and at the same time, the government holds inaccurate beliefs about the true market conduct (that is, \(\eta \) tends to zero), social welfare under uncertainty may decrease to levels lower than both the complete information level with intervention and the free trade level with complete information. As the market becomes highly competitive the drop in profit is drastic and a high tariff close to the Cournot optimal tariff only distorts consumption without bringing sufficient gains from the added innovation (see Appendix).

Thus, if the domestic firm does not try to signal the true type of competition in the market and the tariff is set only after the R&D phase, the presence of uncertainty might enhance the social welfare level above the social welfare with full information and government intervention. This result does not hold in the case of a committed government. When the government is able to commit to its policy before the local firm engages in innovative activities, with or without full information, the government can “credibly” set any tariff above zero. Therefore, the presence of uncertainty does not alter the set of feasible tariffs. As a result, any departure from the optimal tariff level with full information, \(T^* \),
reduces social welfare. Unlike in the non-commitment case, the presence of uncertainty here always has an adverse effect on the domestic country's social welfare.

7.2 Case 2: Signaling

Up to now we have assumed that the domestic government was not in a position to distinguish between Cournot and Bertrand types of conduct. However, the fact that the Cournot firm always invests more in R&D than the Bertrand firm (see Proposition 1), means that the level of cost reduction, \(x \), could be used by the government to infer the true type of competition in the market. The problem is that the Bertrand firm might try to mimic the behavior of a Cournot firm by choosing a higher cost reduction than under the symmetric information scenario to induce a higher tariff. This, in turn, may force the Cournot firm to invest more in marginal cost reduction than under symmetric information in order to signal its type.

The aim of this section is to briefly discuss the situations (conditions) under which the domestic government can distinguish between the two polar types of market competition.

In order to induce the higher tariff, \(t^C \), rather than the low tariff, \(t^B \), a Bertrand firm might try to mimic the behavior of a Cournot firm by choosing cost reduction, \(x^C \). This is the case if

\[
\pi^B(x^B, t^B) \leq \pi^B(x^C, t^C). \tag{26}
\]

When the above condition holds, to induce the government to implement a high tariff, a Cournot firm would have to signal its type by investing more than \(i(x^C) \) in R&D. Since this differentiation action is costly, the Cournot firm will signal its type only if there is some decrease in marginal cost, \(\tilde{x} \), high enough to deter the Bertrand firms to opt for the same investment level, that is,

\[
\pi^B(x^B, t^B) \geq \pi^B(\tilde{x}, t^C(\tilde{x})), \tag{27}
\]

but, at the same time, this decrease in marginal cost must still be low enough that the firm competing à la Cournot would be better off by revealing its type through signaling than by being perceived as a Bertrand firm

\[
\pi^C(\tilde{x}, t^C(\tilde{x})) \geq \max_x \pi^C(x, t^B(x)) \tag{27'}
\]
where $t^C(x) = \max \{W^C(x,t) \}$ and $t^B(x) = \max \{W^B(x,t) \}$.

The conditions (26), (27) and (27') define the pair of investment levels (x^*, \tilde{x}) that form a separating equilibrium given the appropriate government beliefs.

As in the previous section, we assume that the prior probabilities of the Bertrand and Cournot types of conduct are given by: \(\Pr(V_f^B) = \eta \) and \(\Pr(V_f^C) = 1-\eta \). Much like Maggi and Grossman, (1998) we assume that the government’s out-of-equilibrium beliefs are such that any \(x \) other than \(\tilde{x} \) indicates that the firm is of the Bertrand type, or more formally:

\[
\begin{cases}
\tilde{x} - \text{Cournot type of competition} \\
\forall x \neq \tilde{x} - \text{Bertrand type of competition}
\end{cases}
\]

These beliefs support the largest possible set of separating equilibria. Moreover, the government’s prior probability distribution and its subsequent updates are assumed to be common knowledge.

As Bhattacharjea (2001) points out, it is usually very difficult to solve analytically for these conditions and such a task “ultimately relies on numerical simulations to demonstrate the existence and social welfare properties of signaling equilibria, even with linear demands and constant costs” (p. 124). Since our set-up is no exception to this observation, we also choose a numerical simulation, the results of which are summarized below. We assume that the R&D cost function is quadratic and is given by \(i(x) = x^2/2 \).

In order to characterize the “signaling” separating equilibrium, we first identify the ranges of parameters \(c, k, \) and \(\gamma \) for which it is profitable for a Bertrand firm to imitate the behavior of a Cournot firm by investing \(i(x^C) \) in R&D so that the condition (26) holds. Our simulations show that for most of the parameter space, a Bertrand firm is better off when it mimics the behavior of a Cournot firm. Only when the level of unit cost \(c \) is almost as high as the highest level of \(c \) that can still sustain a duopoly structure (see assumption (A2)), the cost of innovation \(k \) is very low, and the level of product differentiation is neither very low nor very high (\(\gamma \) in the \((0.2, 0.7)\) range), will a Bertrand firm invest \(i(x^B) \) rather than \(i(x^C) \).

As for the remaining conditions (27) and (27'), they require that the initial marginal cost \(c \) be “high enough” for the signaling to be effective. If, on the contrary, the marginal cost

21 Under this parameter constellation, condition (26) does not hold, so there exists a trivial, “non-signalling” separating equilibrium that coincides with the equilibrium under symmetric information discussed in section 4.
is low, the gap between x^*B and x^*C is small and a Cournot firm has less room for increasing its innovation for signaling purposes. Therefore, it is advantageous for a Bertrand firm to pretend to be a Cournot firm, even if it chooses R&D levels that bring the marginal cost down to zero.

Given “high enough” marginal costs, c, a high level of product differentiation (γ low) increases the likelihood of the existence of a separating equilibrium. If products are highly differentiated, then, on one hand the gap between x^*B and x^*C is relatively small, as both Cournot and Bertrand firms act almost like monopolists so the mimicking is not too costly. On the other hand, and more importantly, having an almost monopolistic position, the Bertrand firm has much less need for an increase in protection, so even a relatively small deviation from its optimal choice under perfect information may not pay off.

Much like in the no signaling case, when a separating equilibrium exists, the level of social welfare might be higher under asymmetric information than under full information. This is at least the case when products are highly differentiated. As we just discussed, when products are not alike, the Bertrand firm has low incentives for increased protection, so the signaling behavior of a Cournot firm results in a mild increase in the innovation level beyond x^*C. As we know from proposition 1, the optimal marginal cost reduction, x^*C under symmetric information, is below the “first–best” level full information, x_{so} and so the signaling brings it closer to its “first-best” level. Unlike in the no signaling case, the increase in social welfare level above its full information level with government intervention may occur only under Cournot competition. When the true conduct is Bertrand and a separating equilibrium exists, the social welfare levels under full and asymmetric information are equal.

9. CONCLUDING REMARKS

The focus of our policy analysis was the simple and, in reality, most frequently used “tariffs cum foreign competition” set-up designed to protect a domestic industry. This policy framework can appear in several variants due to reasons like the mode of the oligopoly conduct, the (in)ability of the domestic government to commit to its policy and information asymmetry.

In the first part of the paper we assumed a perfect, symmetric information set-up and explored the role of oligopoly conduct and the ability of the domestic government to commit
to the level of its policy instrument. We considered three policy options: the government commitment regime, the government non-commitment regime, and free trade. We found that, regardless of the market conduct and the ability of the domestic government to commit in advance to the level of its policy, the optimal tariff protection enhances not only the domestic social welfare but also the innovative effort of the domestic firm. However, free trade, as a policy option *per se*, has also its virtues, since the information requirement for its implementation is virtually zero. Thus we introduced other policy criteria beyond generated social welfare (i.e., the information requirement, time consistency, and the risk of manipulative behavior) in order to evaluate the policy options under consideration. We found that the most robust policy choice is the government “non-commitment” regime which has a low information requirement, and in which the optimal tariff is time consistent and the risk of manipulation by the domestic firm is absent. In addition, the social welfare loss vis-à-vis the government commitment regime is negligible.

An independent and interesting result of the first part of the analysis is the comparison between the corresponding equilibrium values of the innovative efforts and tariffs. Thus in the government “non-commitment” regime the optimal Cournot tariff is higher than the analogous Bertrand tariff and consequently, the innovative effort of the Cournot type of firm exceeds that of the Bertrand type. (The same relation between R&D efforts and tariffs seems to hold in a commitment regime, but we managed to prove this only in the case of the specific functional form of the innovative cost function)

In the second part of the paper, we introduced two kinds of information asymmetry and briefly explored how did the most desirable policy under perfect information - a non-commitment regime- fared in the presence of the government’s uncertainty about the market conduct. The first type of uncertainty is deemed the strong one since the domestic government is presumed not to be able to learn anything about market conduct and has to rely only on its prior beliefs in setting the policy. The second type of uncertainty is the standard one in which the government is able to update its beliefs after observing the R&D effort of the domestic firm that can signal its type.

The asymmetric information set-up is less information intensive but in general worsens social welfare compared to the analogous symmetric information set-up. Nevertheless, we identified situations when the expected social welfare can be higher than the corresponding social welfare levels under the full information assumption. In the strong kind of the information asymmetry, this happens when Bertrand is the true type conduct and the associated government probability to this true conduct is “not too low”. In the case of the
second type of information asymmetry, this occurs when there exists a separating equilibrium under Cournot competition and products are “differentiated enough”. In a such situation an increase of the innovative effort due to signaling either approaches the first best innovative effort from below or does not exceed it “too much”.
APPENDIX

PROOF OF PROPOSITION 1

To prove the relation between R&D levels in different types of market conduct, we first eliminate V_d in equation (16) by using the fact that $V_d \beta_f - V_f \beta_d = 0$. Then we differentiate the resulted equation with respect to V_f and we get

$$\frac{dx}{dV_f} \left(k i''(x^*) - \frac{2 \beta_d \beta_f V_f (V_f + \beta_f)^2}{[\beta_d (V_f + \beta_f)^2 - \beta_f \gamma^2]^2} \right) = \frac{2 \beta_d \beta_f V_f [\beta_d (V_f + \beta_f)^2 - (2V_f + \beta_f)\gamma^2]}{[\beta_d (V_f + \beta_f)^2 - \beta_f \gamma^2]^2} q_d +$$

$$+ \frac{2 \beta_d \beta_f V_f (V_f + \beta_f)}{[\beta_d (V_f + \beta_f)^2 - \beta_f \gamma^2]^2} \left((\alpha_d - c + x^*) + \gamma \frac{\alpha_f \beta_f}{(2V_f + \beta_f)^2} \right).$$

Due to assumption (A3), the left hand side parenthesis is bigger than zero. In addition, for Bertrand and Cournot conjectures $\beta_d (V_f + \beta_f)^2 - (2V_f + \beta_f)\gamma^2 > 0$. Then, the right hand side is positive so dx/dV_f is positive, and since $V_f^C > V_f^B$, we find that $x^B < x^C$.

PROOF OF PROPOSITION 2

2. When we take the total derivative of the domestic profit given by equation (5) with respect to t we get and use in it the envelope theorem (for the R&D choice) we obtain that

$$\frac{d\pi^d}{dt} = 2V_d q^d \frac{\partial q^d}{\partial t},$$

where q^d is given by (4). Since $\partial q^d / \partial t$ is positive, the domestic profit increases as the tariff increases.

3. The social welfare function (6) is separable in t and x. Its first derivative with respect to t is given by (10) and is a linear function in t, positive in $t = 0$. Consequently, as long as the tariff increases towards $t^* = t_{so}$, the domestic social welfare increases. With respect to x, the first derivative is given by (13) or equivalently, by $q^d(x, t_{so}) \frac{2V_d + \beta_d}{V_d + \beta_d} - k i''(x) \geq 0$.

Due to assumption (A2) this derivative is strictly positive in $x = 0$. Moreover, the solution of this derivative equal to zero is the socially optimum investment level x_{so}. Consequently, as long as the level of investment increases towards x_{so}, domestic social welfare increases. Since 0 (the free trade level for tariff) $< t^*$ and since for product substitutes, $x_{fi} \leq x^* \leq x_{so}$.
(with equality if we have corner solutions for the R&D level), free trade brings lower social welfare than the optimal tariff does.

Proof of Proposition 3

We use the fact that the social welfare function \(W(x,t) \) is separable in \(t \) and \(x \) and we denote by \(\partial W/\partial t = \partial W/\partial t(x,t) \) and by \(\partial W/\partial x = \partial W/\partial x(x,t) \). We recall from the discussion in the proof for Proposition 2 that \(\partial W/\partial t \) is positive for \(t < t^* \) and negative otherwise, and that \(\partial W/\partial x \) is positive for \(x < x_{so} \). As we saw, from the equation (19) it follows that \(\partial X/\partial t \geq 0 \) (with equality only for corner solutions in R&D).

When the optimal tariff is chosen before the domestic firm decides on its innovative effort, the domestic government solves

\[
\frac{dW}{dt} = \frac{\partial W}{\partial t} + \frac{\partial W}{\partial x} \frac{\partial x}{\partial t} = 0.
\]

This will yield a different solution than when the government cannot commit in advance to its policy. In that case it only solves \(\partial W/\partial t = 0 \) and thus chooses the tariff \(t^* \). However at \(t^* \) tariff protection the domestic firm chooses a level of R&D investment equal to \(x^* \), a level which is below the corresponding socially optimal value. Thus at \(t^* \) \(dW/dt \) is positive. If the government chooses a \(t < t^* \) then \(\partial W/\partial t > 0 \) and moreover \(\partial W/\partial t > 0 \) (since such a tariff will induce a level of R&D lower or equal than \(x^* \)). Thus at \(t < t^* \) \(dW/dt \) remains positive. Consequently the optimal tariff should be above or equal to \(t^* \) with equality holding for \(x^* = c \). If \(x^* \) is below \(c \), then, if tariff is high enough to induces investment levels above or equal \(x_{so} \), \(dW/dt \) becomes negative (\(\partial W/\partial t < 0, \partial W/\partial x \leq 0 \)). To conclude, the optimal tariff \(T^* \) should be higher than the optimal one without government commitment, but not so high as to induce the socially optimal level of innovation. Thus \(X^* \) will be above \(x^* \) but below the socially optimal value of innovation, \(x_{so} \).

Proof of Proposition 4

1. A domestic firm that correctly anticipates a tariff protection level of \(t^u \) chooses a level of R&D given by (16) with the amendment that \(t^* \) is replaced by \(t^u \). Since \(t^u \) does not depend on the level of innovation, the corresponding level of R&D equals the R&D choice of a firm facing a committed government that announces a \(t^u \) level of tariff protection (see
formula 19). Thus, for any given level of tariff t, social welfare in the case of non-commitment regime equals the social welfare under commitment, provided that in the former case the domestic firm *correctly* anticipates the level t of the tariff.

We know from Proposition 3 that as long as the tariff increases towards $T,*$ social welfare increases as well. In Bertrand competition t^u is always higher than t^{uB}. In addition, for some values of η that are close enough to 1, the continuity of t^u in η ensures that t^{uB} is smaller than T^{*B}. Thus, for such values of η, social welfare under the protection level, t^u, is always higher than social welfare under t^{uB}. On the other hand, when products are almost homogenous and η is close to 0 so that the tariff level t^u approaches t^{uC} such a high protection level might drive the domestic social welfare to levels even lower than the free trade level.

2. The social welfare function (described by formula (6)) increases in t for $t \leq t^*$ and increases in x for $x \leq x_{so}$. The tariff t^u is above 0, which is the free trade "tariff", but below t^{*C}. Also, the level of R&D chosen by the domestic firm under tariff protection x^* is above the free trade level (but below or equal to x_{so}). Thus, the optimal tariff under uncertainty t^u enhances the domestic social welfare with respect to the free trade outcome, but reduces social welfare to below the full information level.
REFERENCES

